APPENDIX VI MiRAM Assessment Data and Summary of Categorization and Vegetation List # Wetland MiRAM Score Results and Categorization | Wetland | MiRAM Score | Wetland Type | |---------|-------------|--------------------------------| | A | 56 | Natural wetland | | В | 53 | Natural wetland | | С | 45 | Natural wetland | | D | 36 | Natural wetland | | Е | 61 | Storm water retention basin | | F | 66 | Storm water retention basin | | G | 12 | Natural wetland | | H | 46 | Storm water retention basin | | I | 39 | Mitigated wetland (stormwater) | | J | 13 | Natural wetland | | Category * | Description | Range | Total on site | |--------------------|----------------|---------|---------------| | 1 | low quality | 0-29 | 2 | | 1 or 2 (gray zone) | | 30-34,9 | | | modified 2 | restorable low | 35-44.9 | 2 | | . 2 | médium quality | 45-59.9 | 4 | | 2 or 3 (gray zone) | | 60.9 | 1 | | 3 | high quality | 65-100 | 1 | ^{*} scoring breakpoints for wetland category based on the ORAM # Vegetation List | Natur | ral Wetlands Vegetation | | |----------------------------|---------------------------|------------------| | Common Name | Scientific Name | Indicator Status | | buttonbush | Cephalanthus occidentalis | OBL | | black willow | Salix nigra | OBL | | silky gogwood | Cornus amomun | FACW+ | | American elm | Ulmus americana | FACW- | | eastern cottonwood | Populus deltoides | FAC+ | | green ash | Fraxinus pennsylvanica | FACW | | broad leaved cattail | Thypha latifolia | OBL | | tall ironweed | Vernonia altissima | FACU- | | willow herb | Epilobium spp | FAC | | soft stemmed rush | Juncus effusus | OBL | | fringed sedge | Carex crinita | FACW+ | | silver maple | Acer saccharinum | FACW | | red maple | Acer rubrum | FAC | | fowl manna grass | Glyceria striata | OBL | | purple loosestrife | Lythrum salicaria | OBL | | sensitive fern | Onoclea sensibilis | FACW | | bullrush spp | Scirpus spp | OBL | | blue vervain | Verbena hastate | FACW+ | | rice cut grass | Leersia oryzoides | OBL. | | royal fern | Osmunda regalis | OBL | | Common Buckthorn | Rhamnus cathartica | UPL T | | sandbar willow | Salix exidua | OBL | | red osier dogwood | Cornus stolonifera | FACW | | swamp milkweed | Asclepias incarnata | OBL | | gray dogwood | Cornus racemosa | FACW- | | hop sedge | Carex lupulina | OBL | | common elderberry | Sambucus Canadensis | FACW- | | white meadowsweet | Spiraea alba | FACW+ | | common reed | Phragmites australis | FACW+ | | red canary grass | Phalaris arundinacea | FACW+ | | indian hemp dogbane | Apocynum cannabinum | FAC | | torreys rush | Juncus torreyi | FACW | | wool grass | Scirpus cyperinus | OBL | | taper leaf water horehound | Lycopus rubellus | OBL | | cinnamon fern | Osmunda cinnamomea | FACW | # Wetland Indicator Status: OBL: Obligate wetland plant that occurs almost always, 99% of the time, in wetlands under natural conditions, but which rarely occur in non-wetlands. FACW: Facultative wetland plant that occurs usually, 67% to 99% of the time, in wetlands, but also occurs 1% to 33% of the time in non-wetlands. FAC: Facultative plant that occurs in both wetlands and non-wetlands 33% to 67% of the time. FACU: Plant that occurs sometimes, 1% to 33% of the time, in wetlands but occurs more often, 67% to 99% of the time, in non-wetlands. | | Micuro | ANI D | ADID | Acces | SMENT METHOD FO | n Mirti Al | UDG (MIED A MI) | |---------------|--|-------------|------------|------------------------|--|--|-----------------------------------| | DE Land ar | nd Water Management Division | AN I | APID | | old Form Version 2 | | IDS (WIIRAWI) | | Site Na | ame: Anboy Males VA Evalu | uator: | Vβ | 166 | | Date: | 12/27/00 | | | x. how much of the Wetland was reviewed? | <u>0</u> % | | | tation within the Welian
acted within the past 5 | nd been alte | red and/or buffer | | Note: T | he Evaluator must be trained in the MiRAM and should | refer to | o the M | iRAM Rat | ng Form and User Manual | when using th | is form. | | ií any | y of the following questions are answered yes, the Well | | | e Ratin
s hìgh (und | | Quantitative F | Rating is not necessary. | | actuall | ny part of the Wetland located within an area
y contain habitat suitable for either the Piping | Plove | er or t | he Hine's | Emerald Dragonfly? | | ☐YES ☐NO | | | ed on the MDNR's Endangered Species Asset
Vistate-listed Threatened or Endangered plant | | | | | | YES NO | | 3. is m | ore than 5 acres or more than 25% of the enti | re We | tland | compris | ed of a Rare Wetland | | | | 5 acres a | unity Type? Check all Rare Wetland Commun
and less than 25% of the wetland, the rare community shou | ld be st | ilit off a | ınd evaluat | ed separately | | ☐ YES ☐ NO | | | 61 or S2 Natural Community Type Souther ny part of the Wetland within 1000 feet of the | | | | wth/Mature Forested W
Mark of any of the Gre | | The This | | | ng Lake St. Clair? | | | • | | | ☐ YES \\\ \(\text{YNO}\) | | | | Juan | titati | ve Rati | ng | | | | | he appropriate point value(s) and assign the score for e | | | | he subtotal for each metric | and add to de | termine the final score. | | 5 | Metric 1. Wetland Size and Distribution | n (9 t | ots m | ax) | | | | | 9 pts
max | 1a. Select a size class (6 pts max) | | | 1b. Usin | the NWI, select a sca | rcity class (| 3 pts max) | | | 6 pts ≥50 acres | |] [| | 0 to 20% of surrounding | | | | | 5 pts 25 acres to <50 acres 4 pts 10 acres to <25 acres | | - | 2 pts
1 pt | >20 to 80% of surrounding 2-m | | | | | 3 pts 3 acres to <10 acres | | ┨ <u>┣</u> | I. <u>1.P1</u> | Troops or dailed having 2 to | 120,00 10 17 | Diller, I | | | 2 pts 1/2 acre to <3 acres | |] | | | | | | | 0 pt less than ¼ acre | |] | | | | • | | u | Metric 2. Buffers and Intensity of Surr | ound | ing I | and Hea | /12 nte max) | | | | | | | | _ · · · · · · · | | | | | 12 ple
mex | 2a. Using an aerial photo, select the most appropriate buffer width (6 pts max) | | | | an aerial photo, select
>25% of the total land | | | | | 6 pts Wide: ≥150 ft around perimeter | - · · · · - | 1 | 6 pts | Very Low Intensity Material Wildlife area, other welland, take of | ng forest, natural g | | | | 4 pts Medium: 75 to <150 ft around perime | ter | 1 | 4 pts | Low Interisity: Shrubland/yo managed parkland, old field, light | ung forest, recent : | | | | 2 pts Narrow: 25 to <75 ft around the perim | neter | | (2.pls | Moderately High Intensity | Residential 8 18 | wns/manicured parkland, gol/ | | | Q of Very Narrow; 0 (no buffer) to <25 ft a | round | | 1 pt | course, conservation tillage, receil High Intensity; Commercial. | ındus(na), high-dei | nsity residential, heavily grazed | | | perimèter | | J L | | pasture, row crops, multi-lane pay | ed road, constructi | on echarly, parking lot, mining | | 17. | Metric 3. Hydrology (26 pts max) | | | | | | | | 26 pis | | ·. <u> </u> | | | | | | | max | 3a Select all sources of water for Wetland | | 3 | | all wetland connection | ns that app | у | | | (1.5 pt.) Precipitation (1.2 pts) Groundwater | | | 2 pts
2 pts | 100-year floodplain
 Between a Stream/Lake/F | ond and Hum | an Land Use | | | 2 pts Seasonal Intermittent Surface Water | | | 2 pts | Wetland/Upland Complex | | | | | 5 pts Perennial Surface Water | | | 2 pts | Riparian Corridor | | | | | 3c. Select the dominant duration of | | | | ongoing hydrolgic alte | | | | | inundation/saturation, or select all that co-dominate & average (4 pts max) | | ign a | • | ue, or select adjoining
weir(s) | options & a | iverage (8 pts max) | | | 4.pts Permanently inundated | □ tik | es(s) | |) stormwater inputs 🔲 lillin | ng/grading | other. | | | Permanently Saturated to | ☐ di) | kes(s) | | l channelization ☐ roa
logic Alterations Apparent: | id bed/RR grade
No significant alli | | | | Regularly Inundated | | 8 pts | alteration is | rarc | | | | | 2 pts Regularly Saturated to
Seasonally Inundated | / | .etq 6. | assessment | G. Significant hydrological alteration
and/or ongoing minor hydrological a | steration is only oc | casional | | | 1 pt Seasonally Saturated in the
Upper 12 Inches of Soil | (| 4 pts | Recoveri | tg: A single significant hydrological and/or ongoing minor hydrological | alleration occurre
alleration is freque | d within 20 years phor to the | | | ubtotel
Is page | | 1 pt | Recent o | No Recovery: Multiple signific | cant hydrological a | Herations have occurred in the | | CAREE TO THE | .a bañr | \perp | | zo years prio | r to the assessment and/or significa | on atteration(5) is c | arguing | | _ | | | | | | | | | | | |---------------|--|--------------------------------------|---|---|---|--|--|--|--|--| | 14 | Metric | 4. Hal | oitat Alterati | on and Hab | itat Str | ucture | Devel | opmen | t (20 pts max) | | | 20 pts
max | | rafue, or
in
entation | t or ongoing s
select
adjoin
dredgin
plowing
intensiv | ing options (
g
/disking | & averag | ge (4 pts
road vehic
astruction v | max)
le usc | | · | | | | 4 p | ts No S | iubstrate Disturb
o minor disturbance i
overed: significant | s rare | | | | | development, or | etland's habitat structure
select adjoining options & | | | (3 p | a68@51 | sment and/or ongoing | minor substrate dist | lurbance is c | only occasion | nal | | average (7 pts m | <u> </u> | | | 2 p | ts Reco | Vering! A single si
essessment, and/or o | gnificant substrate o
ngong miner substr | listurbance d
ale disturba | occurred with
nee is freque | in 20 years
nt | nging a | 7 pts Excelle
5 pts) Good | nt | | | 1 p | Rece
in the 2 | int or No Recove
20 years prior to the s | ery: Multiple signifi
ssessment and/or si | cani subsira
ignificant dis | ete disturbani
ilurbance is c | es have or
ingoing | conted | 3 pts Fair
1 pt Poor | | | | □ barrier □ selecti □ clearo 9 pr 6 pr | road bed/ive culting ulting S No H | RR grade | owing or shrub renarse woody debri
ezing
Apparent No si
habital alteration occ
grificant habital atla | noval
is removal
ignificant alti
curred more
ration occur | ☐ nutrie ☐ herbid ☐ sedim eration and/d than 20 year | ni enricht
ide/chem
ientalion
r ongoing r
s prior to th
years prior | meni/nuiss
nical liteato
mmor altera
ne assesso
lo line asse | ance algae | king
It allorations only occasional
alteration is frequent | | | 1.p1 | Rece | nt or No Recove | Ty: Multiple signific | cant habitat | alterations h | accriue | ed in the 20 | years prior to the assessment a | nd/or habitat alteration is ongoing | | 10 | Metric | 5. Spe | cial Situatio | ns (20 pts r | nax) | | | | | · · | | 20 pts
max | 5a. Add | 10 pts | if any of thes | e situations a | apply | 5lo | | <u> </u> | Forested Wetland | | | | | | ical Value (see i
USFWS design | | | 5 | | | ned canopy cover from a
≥3 in to quality as a free Must | any group(s) of trees
be at least 5 agres or 25% of Welland | | | | Federal/S | State-listed Thre | | | 5c. | Add 5 | pts for | Urban/Suburban W | etland | | | | | 3 Natural Comr | nunity Type (at t | easi | <u> </u> | ls >50 | % of the | iendscape in a 1000-ft r | adius low-permeability surfaces? | | | 90% | Southern
Old-Grow
is o: 25% of | Bog (at least 5 acr
th / Mature Ford | ested Wetland (| | 5d. | is the t | Wetland
ormwale | r trealment pond excava | n-contiguous and either: | | 10 | Metric | 6. Veg | etation, Inte | rspersion, a | ınd Hal | bitat Fe | atures | (20 pt | s max) | | | 20 pts
max | | | over score fo
Lassign point | | | 6 b. | | | total open water and | d assign points (3 pts max) | | | | | Native species | Argh nabw
d.versity | 3 pls | | 2 pts i | | te: 1.0 acres to <2.5 acre.
.25 acre to <1.0 acre. | res | | | | >25% of
Wejund | dominate coverage | moderals to low
malive diversity | ž ptu | | (P) | | <0.25 acres | | | | Vegetation | 103 | PTYSSIVE OF NON-
native species | moderate to tron | 2 pti | 6c. | | | | thly invasive species | | | Component
is > % acre | | Native species | moderate to high | 1 pi
2 pi: | - | | | Absent: <1% Aerial Co
Absent: <5% Aerial Cov | | | | 1 | <25% o'
Welland | deminare consusts | failive diversity
fow native diversity | 1 pi | | -1 pt | Sparse: | 5-25% Aerial Coverage
te: 25-75% Aerial Cover | | | | | 9103 | Myestive or non-
native species | moderate native
diversity | t pr | | | | re: 25-75% Aerial Covera | | | | <u> </u> | | dominale coverage | moderale to hon | C pi | 6d. | | | | on option (5 pts max) | | | | >25% of
Welland | Native species
dominate coverage | native diversity
for native diversity | 1 pt | | | | gree of Interspersion
te Degree of | C C C | | | Vegetation Component is <vi acre<="" td=""><td>area</td><td>Invasive or non-native
coverage</td><td>species dominale</td><td>0 pi</td><td></td><td>3 pls</td><td>interspe</td><td></td><td>101 101</td></vi> | area | Invasive or non-native
coverage | species dominale | 0 pi | | 3 pls | interspe | | 101 101 | | | | <25% of Wel | lend area | | û pi | (| <u>1</u> P) | Low Deg | gree of Interspersion | | | | | | orest Overstory
Shrub/Sapling C | | | | 0 pt | No inter | spersion | NEXCENSE NOTIONS THE | | | | | lerbaceous Cor | | | I . | | | | eatures in the Wetland | | | Motein 7 | · | In Dographi | nnal and | | | f assig | | s (12 pts max) Sparse (1 pt) Mode | erate (2 pts) Dense (3 pts) | | | | | ic, Recreation (3 pts max) | onai ano | ļ | - 1 | osent (o
<1 per acr
or 5% of an | ė | 1 to 5 peracre or 6 to | erate (2 pts) Dense (3 pts)
10 per acre or > 10 per acre or
to 50% of erce > 50% of erae | | 3 pts | Select all | that appl | y and assign p | oints | | ৃত | 0 to 3 | pts Hu | rnmocks/Tussocks/Tree | Mounds % of area | | māx | 1 pl | Scenic \ | /alue
ional Value | ··· | | 7.
7. | 0 to 3 | | parse Woody Debris (CW
rge Living/Dead Standin | | | ļ | 1 pt | | Historical Value | <u> </u> | | 1 | 0 to 3 | | nphibian Breeding/Nurse | | 56 | | | • | | | | | | | | | | | | |------------------|-----------------------------|--|--|------------------------|---------------|----------------------|-----------------------|-----------------|-------------------------------------|--|---------------------------------------|---------------|----------| | DEOL
Land and | l Water Maπ | ngement Divisi | | IICHIGA | AN F | RAPID | | | MENT METH
d Form Vers | OD FOR WETL.
sion 2.0 | ANDS (N | iiRAM | 1) | | | | or Kues | * | Evalua | ator | 780 | | | | | i 12. /2: | 3/09 | | | | | | nd was review | red? <u>(()</u> | <u>)</u> % | | las veg | geta | | • Wetland been a
• past 5 years? | ltered an | d/or but | | | Note: The | Evaluator m | ust be trained in | the MiRAM and | should r | eler | | | | | Manual when using | | , | | | | | | | | Ma | rratio | e Rat | ina | | | | | | | If any o | of the followin | g questions are | answered yes, t | he Wellar | | | | | | se of the Quantitativ | e Rating is | not nece | ssary. | | 1. Is any | part of the | • Wetland loc | ated within as | ı area d | esig | nated | as Crit | ical | Habitat and d | oes the Wetland | 1 " | | 7 NO | | 2 Base | contain ha | bitat suitable
가까요's Endan | for either the | Piping : | Plov | er or t | he Hind | e's l | Emerald Drago
or site inspect | ontly?
ion de | | | <u> </u> | | | | | | | | | | | ur within the | | | /ES [|] NO | | | | | | | | | | | of a Rare We | | | | | | 5 acres and | nity Type?
Hess than 25' | Check all Ra
% of the wetland, | re vveriano Go
the rare commun | ommunii
iity should | ty I)
Ibes | ypes p
plit off a | etow. i
and evalu | if ihe
Jaled | Rare Wetland Co
separately. | mmunity is less than | | ∕ES 💢 | ои С | | ☐ S1 | or S2 Natu | ral Community | / Type 🔲 S | Southern | Bog | |] Old-G | Frow | th/Mature Fore | | ļ | | · | | | part of the
Lake St. 0 | | hiл 1000 feet (| of the O | rdin | ary Hi | gh Wat | er N | lark of any of | the Great Lakes | _Y | ∕ES \[Z | ON`[| | moraulty | y Lake Oli C | <u> </u> | , . , | | | | | | | | | | | | | | | | | | | ve Rai | | | | | | | | | | | | | | | | e ihe | subtotal for eac | h metric and add to | determine | the final : | score. | | 3] | Metric 1. | Wetland S | ize and Disti | ibution | (9 | pts m | ax) | | | | | | | | 9 pts | 1a. Seiec | a size class | (6 pts max) | | | 7 [| 1b. Usi | ina 1 | the NWI, selec | t a scarcity clas | s (3 pts m | naxì | | | max | 6 pts | | | ···· | | 1 | 3 p | | | ounding 2-mile radio | | | | | | 5 pts | 25 acres to < | 50 acres | | , | | 7 2 p | | >20 to 80% of st | mounding 2-mile ra |
dius is weti | land | | | | 4 pls | 10 acres to < | 25 acres | | |] .L | 1 p | pt | >80% of surroun | ding 2-mile radius i | wetland | | | | | 3 pts | 3 acres to <1 | | | | - | | | | | | | • | | | 2 pts | 1/4 acre to <3
less than 1/4 a | | | | | | | | | | | | | | 10 pt |) 1655 triair /4 a | <u></u> | | | | | | • | | | | | | Li | Metric 2. | Buffers an | d Intensity o | f Surro | und | lina L | and Us | se (| 12 pts max) | | | | | | 12 pis | | | | | | | ····· | | · | | | | | | max | | | oto, select the
th (6 pts max) | most | | | | | | o, select the surr
tal land use & av | | | | | | 6 pts | | around perimet | er | | 1 | 6 pt | ts N | Very Low Intensi | ly: Maluting forest, natur | <u> </u> | | | | | 4 pts | | o <150 ft around | | | 1 ! | 4 pt | , i | | mibland/young lotest, rece | | | | | | | | | <u> </u> | | - | - | - | | field, lighliy grazed pastu
Intensity: Residential | | | | | | 2 pts | | <75 ft around the control of | ' | | - 1 | 2 pt | والإ | course, conservation b | llage, recent clear-cut (<1) | yrs.). (wo lane | e road | | | i | 0 pt | perimeter | o (no nanci) to | 525 It aro | Onu | | 1 pt | | | ornmercial, industrial, high
lit-lane paved road, consti | | | | | - | , | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | 12 | Metric 3. | Hydrology | (26 pts max) | | | | | | | | | | | | 25 pls | 2n Colont | 11 001110000 01 | | | |] [- | oh Caia | | ul westered ear | nections that a | | | | | wex. | 1 g | Precipitation | water for We | Harro | | - | 2 pts | <u>,</u> _ | 00-year floodpla | | ріу | | | | Ì | 2 pls | Groundwater | | | | ┤ ├─ | 2 pts | _ | | m/Lake/Pond and H | uman Land | Use | | | ļ | 2 pls | | mittent Surface | Waler | | | (2 pls | | Velland/Upland (| | | | | | Ī | 5 pts | Perennial Surf | ace Water | | | | 2 pts | s F | Riparian Corridor | | | | | | ŗ | 3c. Select | the dominant | duration of | - | 34 | Check | k nast o | or o | naaina hydrol | gic alterations in | or near | Wetland | | | ľ | inundation | /saturation, d | or select all th | at | | | | | | joining options (| | | | | 1 | co-domina | te & average | (4 pts max) | | □ä | itch(s) | | Ωv | veir(s) | point-source | | dredging | | | ļ | 4 pts | Permanently In | nundaled | | _ | ies(s)
ikes(s) | | = | itormwater inputs
francelization | ☐ filling/grading
☐ road bed/RR gra | | other | | | | 3 pts | Permanently S | | | _ | 8 pts | | drolo | gic Alterations A | pparent: No significant | | nd/or angoir | ng minor | | | ' - | Regularly foun
Regularly Satu | | | | | Recove | | | and allowalis and a second | nere ibaa oo | | th- | | | 2 pts | Seasonally inu | ndated | | | 6 pts) | | | | cal alteration(s) occurred d
drological alteration is only | | ears prior lo | une . | | 1 | 1 pl | Seasonally Sat
Upper 12 Inche | | | | 4 pts | Recove | ering
eor e | A single significant | hydrological alteration occurrences of the hydrological alteration is free | oned within 20
ment | years prior | to Ine | | 10\ Subi | otaí | Oppor 12 mult | 70 OI OUII | | | 1 -1 | | | · | laple significant hydrologic | | ave occurs | ợ in lh∉ | | this p | | | | l | | 1 pt | | | | or significant alteration(s) | | | | | 112 | Metric | 4. Hal | bitat Alterati | on and Hab | itat Str | ucture | Devel | opmei | nt (20 t | ots ma | | | | |---------------|-------------------------|--------------------------|---|---------------------------------------|--|------------------------|-----------------------|----------------|--------------|-----------------------|-------------------------|---|-----------------------------------| | | L | | | | | | _ | | 110 (20) | | ·^/ | . · | - | | 20 pts
max | | | or ongoing s | | | | | а | | | | | | | | Doint va | | select adjoin | | | ge (4 pt
road vehic | | | | | | | | | | sedime | ntation | plawing | /disking | _ | struction | enicle us | e | | | | | | | | ☐ filling/gi | No S | intensiv
ubstrate Disturb | | □ othe
No supific | | ance andio | | T4. | 0.1 | 45 161 | | * | | | 4 pts | | g minor disturbance i | | . , , , , , , , , , , , , , , , , , , , | | | | | | | | itat structure
ning options & | | | (3 pls | | overed: Significant
sment and/or ongoing | | | | | or to the | ave | rage (| 7 pts m | ax) . | anig opaons a | | | 2 pts | | vering: A single si | | | | | s prior | ŀ | | Exceller | nt | | | | | 10 INE 8 | essessment, and/or o | | | · · · · · · · | | | Ī | (5 pts) | Good | | | | | 1 pt | | in) or No Recove
to years prior to the a | | | | | ccurred | | ····· | Fair
Poor | | | | | 44 84 | . 1 | | - 1-24 | | | | | | | | | | | | barrierh | | | wing or shrub ren | | | | | r select | | ning opt
redging | | rage (9 pts max) | | | ☐ selective | | | arse woody debri | | == | cide/cher | | | | reognig
lling/gradic | | ther: | | | ☐ clearcut | | 🗀 gri | | | | nentation | | | | lowing/dist | king | | | | 9 pts | <u> </u> | abital Alteration | | · | | | | | | | | | | | 6 pts | | vered: Significanti | | | | | | | | | | | | | 3 pts | Reco | vering: A single si | gnificant habitat atter | alion occur | ed within 20 |) years poo | r to the as: | sessment, a | motor onge | oing minor a | lleration is frequen | ıı | | | 1 pt | Recei | nt or No Recove | ry: Multiple signific | cant habitot ; | alterations h | ave occum | ed in the 2 | 0 years pric | r Id (he as | sessment a | ndror habitat attera | lian is ongoing | | | | | | | | | | | | | · | | | | 10 | Metric 5 | 5. Spe | cial Situatio | ns (20 pts n | nax) | | | | | | | | | | 20 pls | Sa. Add | 10 ots i | if any of these | situations a | vinge | 5t | Add! | ots fo | or Fores | ted W | etland | - | | | max | | ` | ical Value (see l | | · · · · · · | 5 | | | | | | any group(s) o | if Irees | | | | | USFWS design | | | | Stem D | BH must b | e ≥3 ın lo q | ualify as a | tree Must I | be at least 5 acres | or 25% of Wellend | | | | ederal/9 | State-listed Thre | | | 50 | Add 5 | nts fo | r Urbar | /Subu | rban W | etland | | | | | | nal species | | | | | | | | | | meability surfaces? | | | | | 3 Natural Committee (1997) | nunity. Type (at it | easl | | 1,0 . 00 | | - 12114000 | .po 1110 | 1000-111 | par | nousing surfaced: | | | | Southern | Bog (at least 5 acre | | | 5c | | | | | | ty Wetland | | | | | | th / Mature Fore | ested Welland (| al least 5 | | | | | | | n-contiguous a | | | | | or 25% of 1
Sreat Lak | wenano)
kes Coastal Wel | land | | | | | | | | eted from upla | nd or
lion (See Metric 6c) | | | | | | | | | 12/14/0 | C digit | 7070 004 | vica oy | 11,91,10 | radire regelat | 1011 (See ment oc) | | 9 | Metric 6 | . Vege | etation, Inte | rspersion, a | nd Hat | oitat Fe | atures | (20 p | ts max | r) | | | | | 20 pts | Fo Solor | t the e | over score for | roach Voget | ation | Eh | Ectim | ata the | total o | non w | ator one | f applies soi | ints (3 pts max) | | max | | | l assign point | | | 100 | | | 2.5 acres | | | assign po | nts (3 pts max) | | | Compon | erit aile | t assign ponn | high native | | . [| | | | | <2.5 ac | res | | | | | | Netwe species | фчесяпу | 3 pts | | 1.pt | | 0.25 acre | | | | | | | | >25% of
Welland | donizate coverage | moderate to low-
native diversity | 2 pl: | | 0 pt) | Absen | t: <0.25 | acres | | | | | | | 6693 | MASSIVE OF DOCK | moderate to high
native diversity | 2 p1s | 6c | Estim | ate the | total c | overan | e of hir | hly invasive | e snecies | | | Vegetation
Component | | dominate coverage | low native diversity | 361 | 100 | 1.pt | | | | Aerial Co | | . 500000 | | | H > X 2016 | | Notive species | moderate to might
native diversity | i pli | (| -0 pt) | | | | erial Cov | | | | | | <25% of | domwate toverage | low native diversity | 1 p: | | -1 pt | , . | | | Coverage | | | | | | Welland
area | myasive or non- | Inoderate native | 1 pt | | | | | | rial Cover | | | | | | | native species
somnale coverage | low native dynamity | 0 p: | Ļ | 1-o pts | EXTERS | ive: >75 | w Aeria | I Covera | ge | | | | 1 | | | moderate to high | | 6d | Select | one h | orizont | al inter | spersic | n option (5 | pts max) | | | | >25% of | Nabye species
dominate coverage | native diversity | 2 pls | | 5 pts | | egree of | | ersion | 1 | (T) | | | Vegetation | Weband
'area | Invasive of App-Aalive | tow native diversity | 1 pl | | 3 pts | | ate Degr | ee of | | | | | | Component
6 4% acrt | | coverage or noteviative | - had the substitute | 0 ря | | | Intersp | | | | ACA | COS TON | | | | <25% of Web | liono area | | Ø pt | | [1 pt] | Low De | egree of | Interspe | ırsion | (∌ ∫(| 6 6 | | | 2 0 10 3 | | orest Overstor | | | | 0 pt | No inte | rspersio | n | | Messaga | HON BUTT HER | | | 0 to 3 | | Shrub/Sapling C | | | | | | | | | | | | | 0 to 3 | pts H | lerbaceous Cor | nponen! | | | | | | | | eatures in t | ne Wetland | | | | | | | | | | | rts (12 p | | | · ;;- | | | 1 | | | ic, Recreation | onal and | | - <i>f</i> | bsent (0,
oprad 1> | | | e (1 pl)
erabre or | | erate (2 pts)
10 per acre or | Dense (3 pts)
> 10 per acre or | | ! | | | (3 pts max) | | ì | | or 5% of a | | 5% to 10 | % of area | | to per acce or
to 50% of area | >50% of area | | 3 pls | | | y and assign p | oints | | Q | 0 to 3 | | | | | Mounds % of | area | | max | | Scenic \ | | | | <u> </u> | 0 to 3 | | | | | VD) # per acre | | | i | 1 pt | | ional Value
/Historical Value | <u> </u> | | 1.2 | 0 to 3 | | | | | g Trees (12 in
erv Habitat % d | | | · · | 3 1 (3) | -cumurali | onskindat valile | • | - 1 | r E | 1 1/10/5 | ms i A | minoriio(A) | i preedi | HOMNUISE | av
manuai 🥨 d | st gross | | t he <i>©</i> | | | Michiga | N R | APID | Asses | SMENT METHOD FOR | R WETLAN | NDS (MIRA | (MI) | |----------------------|------------------------|--|---------------------------------------|------------|--------------------|---------------------------|--|---------------------------------------|-----------------------|-----------------| | Land a | ∍
and Water Mana | gement Division | | | | | ld Form Version 2. | | | | | Site N | lame: A | or Hullo WC | Evalua | ator: | şjh | 160 | | Date: | 17-/22/6 |). } | | Appro | | of the Wetland was revis | wed? 💯 | <u>ુ</u> % | | | tation within the Wetlar
acted within the past 5 | | | | | Note: | The Evaluator mo | ust be trained in the MiRAM a | ind should r | efer t | | - | | | | _ | | <u>If a</u> | ny of the following | g questions are answered yes | , the Wella | nd is | rated a | e Ratin | tional value and use of the | Quantitative | Rating is not n | ecessary. | | actua | <i>lly</i> contain hal | Wetland located within
oltat suitable for either the | ne Piping | Plov | er or t | he Hine's | s Emerald Dragonfly? | Wetland | YES | ,
MO | | | | NR's Endangered Speci
Threatened or Endanger | | | | | | 12 | X YES | □ NO | | 3. Is i | more than 5 ac | res or more than 25% of | f the entir | e We | tland | comprise | ed of a Rare Wetland | | | | | 5 acres | and less than 25% | Check all Rare Wetland (
6 of the wetland, the rare common
al Community Type | unity should | bes | pilt off s | nd evaluati | he Rare Wetland Community
ed separately,
owth/Mature Forested Wi | | ☐ YES | ⊠ NO | | 4. Is a | any part of the | Wetland within 1000 fee | | | | | | | ☐ YES | | | includ | ling Lake St. C | tair? | | | | | | | 11159 | <u>`</u> ₩0 | | Circle
ර | 7 | point value(s) and assign (he
Wetland Size and Dis | score for ea | eh m | etric. E | | | and add to d | elermine the fi | nal scoré. | | 9 pts
max | 1a. Select | a size class (6 pts max) | | |] [| 1b. Using | g the NWI, select a sca | rcity class | (3 pts max) | | | | 6 pts | ≥50 acres | | | <u> </u> | 3 pts | 0 to 20% of surrounding | | | <u> </u> | | | 5 pts | 25 acres to <50 acres | | <u>-</u> | - | 2 pts | | . | | | | | 4 pts | 10 acres to <25 acres | · · · · · · · · · · · · · · · · · · · | | - L | 1 pt | >80% of surrounding 2-m | ille radius is i | velland | | | | 3 pts | 3 acres to <10 acres 1/4 acre to <3 acres | | | - | | | | | | | | 2 pts | less than 1/2 acre | · | | -{ | | | | | | | 12 pts | | Buffers and Intensity | · · _ · · | und | | | (12 pts max)
gan aerial photo, selec | t the surro | unding land | uses that | | max | | te buffer width (6 pts ma | | | | | >25% of the total land | use & ave | rage (6 pts r | nax) | | | 6 pts | Wide: ≥150 ft around perim | neter | |] [| 6 pls | Very Low Intensity: Malun
wildlife area, other wetland, take o | | grassland, prairie, o | designated | | | 4 pts | Medium: 75 to <150 ft arou | | | | 4 pts | Low Intensity: Shrublandiyo managed parkland, old field, light! Moderately High Intensity | y grazed pasture. | one land road/two | track | | | 2 pts | Narrow: 25 to <75 ft around | | |] | 2 pts | course, conservation triage, recei | it clear-cut (<10 y | rs.). Iwo lane 16ad | | | | (0 pt) | Very Narrow: 0 (no buffer) perimeter | to <25 it are | und | | (PP) | High Intensity: Commercial pasture row crops, finalli-laire past | | | | | | | | | | | · · · | ₹ - | | · | | | 12 | Metric 3. | Hydrology (26 pts ma | ix) | | | | | · · · · · · · · · · · · · · · · · · · | | | | 26 pis
max | | all sources of water for V | Vetland | | | b. Selec | t all wetland connectio | ns that app | oly | | | | (1p) | Precipitation | | | 1 | 2 pts | 100-year floodplain | | | | | | 2 pts | Groundwater | | | -
- | 2 pts | Between a Stream/Lake/F | | nan Land Use | | | | 2 pts | Seasonal Intermittent Surface | ce Water | | - | 2 pts | Wetland/Upland Complex | | | | | | 5 pts | Perennial Surface Water | · | | ♪ . L | 2 pts | Riparian Comidor | | | | | | | the dominant duration o
//saturation, or select all | | | | | ongoing hydrolgic alte | | | | | | co-domina | te & average (4 pts max) | | 10 | litch(s) | |] weir(s) | nt-source | □dredg | ing | | | 4 pts | Permanently Inundated | ŀ | | ies(s)
likes(s) | - | offer- | ng/grading
id bed/RR grad | ☐ ofher
le | · | | | (3 phs | Permanently Saturated to
Regularly Inundated | | | 8 pts | No Hydro
alteration is | ologic Alterations Apparent: | | | ngoing minor | | | 2 pts | Regularly Saturated to
Seasonally Inundated | | (| 6 pls | | ed : Significant hyprological atterality and/or ongoing minor hydrological at the control of | | | nor to line | | | 1 pt | Seasonally Saturated in the | | | 4 pts | Recoveri | TIG: A single significant hydrologics | al alteration occur | red within 20 years | prior to the | | 1/ | Sublois: | Upper 12 Inches of Soil | | | <u> </u> | | i, and/or engoing minor hydrological
if No Recovery: Multiple signifi | - | | correg in the | | 1(0 | this page | | | | 1 pt | | or to the assessment and/or significa | | | voriou iir țiic | | M | etric 4 | Habit | at Alterati | ion and Hab | itat Stru | cture | Develo | pment | (20 p | ts ma | x) | | : | |-------------|--------------|-------------|------------------------------------|--|----------------|-------------|-----------------|---------------|-----------|--------------|----------------------------------|--|-----------| | | | | | substrate/soi | | | | a | | | | | | | | erosion | 10, 01, 01 | dredgir | | | oad vehi | | | | | | | | | | sediment | ation | plowing | | | | vehicle use | , | | | | | | | | filling/grad | | intensi | | 🔲 alhe | | | | - | | - 1- | | | | | 4 pts | | strate Disturb
Inor disturbance | oance Apparent
is rare | . No significa | ni disturb | ance and/or | | 1 | | | d's habitat struc
et adjoining opt | | | | 3 pts | | | t substrate disturbant
g minor substrate dist | | | | rio the | | | pts max) | vi dejoning op | | | | 2 pts | Recove | ning: A single s | significant substrate o | isturbance or | сопесі w) | hin 20 years | tonq | | 7 pts | Excellent | | | | | Zpia | to the ass | ssment, and/or i | pagoing minor substr | ate disturbane | e is frequ | ent | | | 5 pls | Good | | | | | 1 pt | Recent | or No Recov | ery: Multiple signifi | icant substrat | e disturba | ntes have on | curred | | 3 pts | Fair | | | | | I Pt | | | essessment and/or s | | | | . | ' | 1 pt | Poor | - | | | 4b | Check | pasto | ongoing | habitat altera | tion. As | sign a | point va | lue, or s | select | adjoir | ing options | & average (9 p | its max) | | | | d bed/RR | | owing or shrub rer | | | ent enrichd | | | e 🗖 d | edging | (aming | | | _ | selective | | | oarse woody debr | is removel | | icide/chem | ical treatme | ent | | ling/grading | dther: | | | U) | clearcutin | | | razing | | | mentation | | | D | owing/disking | | | | | 9 pls | | | Apparent: но s | | | | | | | | | | | | 6 pis | Recove | red: Significant | habitat alteration oc | curreo more (| han 20 ye | ars prior to It | e assessme | nt and/or | опдоляр г | ninor habitet alterat | ions only octasional | | | | 3 pts | Recove | ring: Asıngles | ignificant habital alte | ration occurre | d within 2 | 0 years prior | to the asses | sment. a | ndrot onge | and minot ajtetatroi | n is frequent | | | | 1 pt | Recent | or No Recov | ery: Mutuple signifi | cant habitat a | lterations | have occume | d in the 20 y | ears prio | r to line as | sessment and/or h | abitat alteration is ongoi | ng | | | | | | | | | | | | | | | | | Me | tric 5. | Speci | al Situatio | ons (20 pts r | nax) | _ | | | | | | | | | Ka. | Add 1 |) nte if : | ny of thes | e situations | annh | 5 | b. Add 5 | nte for | Fores | tod W |
ntland | | - | | V 4. | | | | | | - 10 | | • | | | | roup(s) of trees. | | | | | | | Narrative Rating
nated Critical Ha | | F | | | | | | ouplis) of frees.
ast 5 acres of 25% of W | /elland | | | | | | eatened or Enda | | - | | | | | | | | | | | or animal | | satemad or Linde | angered | 5 | | • | | | rban Wetian | | | | | l⊟s1 | , \$2, 53 | Natural Com | munity Type (a) | least | 1 | -, Is >50 | % of the i | andsca | pe in a | 1000-ft radius | low-permeability s | surfaces? | | | | or 25% of V | | | į | [E | d Cuilean | - at df) m | | | o Occalian Mi | -411 | | | | | | | res or 25% of Wetlan | | 1 21 | | | | | v Quality Wo | | | | | | 25% of We | | rested Welland | (at least 5 | ŀ | | | | | e and non-con
id excavated fr | tiguous and either | : | | | | | Coastal We | elland | 1 | ĺ | | | | | | e vegetation (See M | loine Set | | | | | | | | ļ | 12/100 | C trion 70 | N COM | nea by | III GIII Y TI II E E E E E | , vegetation (deete | isanc sa) | | Me | tric 6. | Veget | ation, Inte | rspersion, a | and Hat | itat F | eatures | (20 pts | ma) | :) | | | | | _ | | | | | | Г <u></u> - | | | | | | | · | | | | | | or each Veget | | 61 | | | | | | ign points (3 p | ts max) | | ~ | | | | | | | | | | | | | | | Co | проле | n and a | ssign poin | ıts (9 pts max | <u>9</u> | Į | | High; 2. | | | | | | | <u></u> | троле | | SSIGN DOIN | high nativit | ()
3 ptr | | 2 pts | | e: 1.0 | acres lo | <2.5 acres | | | | | | Native вреское | high nativit.
diversity | 3 ple | |---------------------------------------|--------------------|------------------------------------|--------------------------------------|-------| | | >25% of
Welland | dominate coverage | moderate to low
retine diversity | Z pts | | | erda | Invasive of bon-
native appoles | moderate to high
native diversity | 2 pts | | Vegetation : | | финица солегара | fow withing disease. | 1 p: | | e >% acre | | Native species | moderaje io hiph
naime diversiry | 2 pla | | | <25% of
Wolland | egassvop sterrimch | Now restore deversity | 1 55 | | | Area | myaswe or non- | moderate native
drysts#s | 1 pt | | i | | dominate coverage | KNA vatine questy. | U pl | | | >25% of | Native species | moderate to high
native diversity | 2015 | | | Walland | dominate coverage | low native diversity | 1 p | | Vepetation
Component
is <½ ucre | aiea | qwasive or non-native
coverage | species dominate | Оря | | | <25% of We | dend area | | 0 pt | | 0 to | 3 pts | Forest Overston | y | | | (O to | 3 pts 3 | Shrub/Sapling C | Component | | | 1 04- | | Herbaceous Cor | | | | pts . | C | ultura | '. Scenic, Recreational and
I Value (3 pts max)
that apply and assign points | |-------|----|--------|--| | nax | -I | 1 pt | Scenic Value | | | | 1 pt_ | Recreational Value | | | | 1 01 | Cultural/Historical Value | | | ⊏5 mn | | d assign points (3 pts max) | |-----|-------------|-------------------------------------|-----------------------------| | | 3 pts | High: 2.5 acres or more | | | 1 | 2 pts | Moderate: 1.0 acres to <2.5 ac | res | | ! | 1_pt_ | Low: 0,25 acre to <1.0 acre | | | | 0 pt/ | Absent: <0.25 acres | | | 6c. | Estim: | ate the total coverage of his | phly invasive species | | | 1 <u>pt</u> | Virtually Absent: <1% Aerial Co | overage | | 1 | () pt) | Nearly Absent: <5% Aerial Cov | erage | | `` | -1 pi | Sparse: 5-25% Aerial Coverage | 9 | | | -3 pts | Moderate: 25-75% Aenal Cove | rage | | | -5 pts | Extensive: >75% Aerial Covera | ge | | 6d. | Select | one horizontal interspersion | on option (5 pts max) | | | 5 pts | High Degree of Interspersion | 1000 1000 100 | | | | | | | [| 3 pts | Moderate Degree of
Interspersion | NOW YOU | | | 3 pts | | | | | tne amount of na
oints (12 pts max) | bitat features in ti | ne vvetiand | |---|--|---|---| | Absent (0 pt)
<1 per acre
or 5% of area | Sparse (1 pt) 1 to 5 per acre or 5% to 10% of area | Moderate (2 pts) 6 to 10 per acre or 10% to 50% of area | Dense (3 pts) > 10 per acre or >50% of area | | () 0 to 3 pts | Hummocks/Tussoc | ks/Tree Mounds % of | area | | [0 to 3 pts | Coarse Woody Deb | ris (CWD) # per acre | | | 1 0 to 3 pts | Large Living/Dead 5 | Standing Trees (12 in | DBH) # per acro | | 1 0 to 3 pts | Amphibian Breeding | g/Nursery Habitat % « | ol area | Total | DEO. | i Water f | Management I | | Місн | IIGAN | RAPI | D As | | SMENT MET | HOD FOR WE | TLAN | os (MiR | AM) | |---------------|---------------|---|-------------------------------------|----------------------------|------------------------|----------------------|-------------------|--------------------|-------------------------------------|--|------------------------------|---|------------------------| | Site Nar | ne: 📐 | H code | illo VI | Ev | aluato | r: <u>19</u> | $X \int$ | GC. | | | Date: | 12/22/ | 00) | | Approx. | how m | uch of the V | Vetland was r | eviewed? | 100 | % | | | | the Wetland bed
the past 5 years | | | | | Note: Th | e Evaluat | tor must be trai | ned in the MiRA | AM and sho | uld refer | to the | MIRAN | / Ratio | ng Form and U | ser Manual when u | ising (his | s form./ | | | | | | | | | | ive R | | | | | | | | If any of | of the folio | owing question
f the Wetlan | s are answered
d located wit | i yes, the W
hin an are | /elland it
ea desir | s rated
unate | as higi
d as C | n funci
Fritica | tional value and
al Habitat and | l use of the Quanti
I does the Wetla | itative Ri
and | | | | actually | contain | ı habitat suif | table for eithe | er the Pipi | ing Plo | ver o | the h | line's | Emerald Dra | agonfly? | | YES | ON <u>∖</u> Z∐,NO | | | | | idangered Sp
ied or Endan | | | | | | | | | 河 YES | □ NO | | 3. Is mo | re than | 5 acres or n | nore than 25° | % of the e | ntire W | etlan | d com | prise | ed of a Rare \ | Netland
Community is tess | | | <u> </u> | | 5 acres an | d less tha | in 25% of the we | etland, the rare of | ommunity si | tould be | split of | fiand ev | /aluate | ed separately. | | | ☐ YES | ₩ NO | | | | Vatural Comm
f the Wetland | | Sout | | | | | | orested Wetland
of the Great Lat | | | \ | | | | St. Clair? | | | | | | | | | ,,,,,, | YES | | | | | • | | | Qua | ntita | tive F | ₹atir | າα | | | | | | Circle the | appropr | iale point value | a(s) and assign | the score fo | | | | | | each metric and ac | id to del | ermine the f | inal score. | | 3 | Metri | ic 1. Wetia | nd Size and | Distribu | tion (9 | pts i | max) | | | | | | | | 9 pis
max | 1a. Se | elect a size o | lass (6 pts m | ax) | | | 1b. I | Using | the NW!, se | lect a scarcity of | class (3 | pts max) | | | Illax | | 5 pts ≥50 acr | - | | | | 1 | 3 pig | 0 to 20% of s | urrounding 2-mile | radius is | welland | | | | - 1 | ·· | s to <50 acres | | | 4 | | 2 pts | + | f surrounding 2-mi | | | | | | . ⊢ | | s to <25 acres
to <10 acres | | | \dashv | | 1 pl | >80% of surre | ounding 2-mile rad | ius is we | ena uo | | | | . ⊢ | ·· | to <3 acres | | | | | | | | | | | | | | p less tha | in ¼ acre | | | _ | | | | • | | - | | | 1 | Matri | o 2 Buffor | s and Intens | alturat Ci | | dina | Land | Den | /17 nte ma | ~ | | | | | | Metri | CZ. Duller | S and linens | sity or St | ii rouii | umg | Lano | use | (12 pts ma | ^) | | | | | 12 pts
mex | | | t photo, selec
width (6 pts | | st | | | | >25% of the | oto, salect the s
total land use & | & avera | age (6 pts | max) | | | 6 | pts Wide: ≥ | 150 ft around p | erimeter | | | | 6 pls | | DSity: Maluring forest,
welland, lake or rive: |
natural or | assland, prairie | designated | | | 4 | pts Medium | : 75 to <150 ft | around peri | meter | | ŀ | 4 pts | | Shrublandiyoung fores
I, old field, lightly grazed | | | | | | 2 | ! pts Nапоw: | 25 to <75 ft are | ound the ps | erimeter | | | 2 pts | Moderately Hi
course, conservate | gh Intensity: Reside
on Wago recent clear-co | ential & lew
ut (<10 yrs. | ms, manicured p
.j. two lane imag | parklanc, golf | | | 10 | P. Very Na | rrow: 0 (no buf | ier) to <25 l | t around | | | pl) | High Intensity | Commensal, industrial, multi-lane paved road) | l, high-deni
constructio | sily residential. I | reavily grazeo | | | | / pentusic | <i>7</i> 1 | | | | - | | Thousand, ton propo | Transport of the state s | pario de Dorio | , | <u>g</u> respectively. | | 12 | Metric | c 3. Hydrol | ogy (26 pts | max) | | | | | ·-· | | | | | | 26 pls
max | | ` | es of water f | or Wetian | d | | 3b. S | elect | all wetland | connections tha | at apply | y | | | | 1 | | | | | - | - | pls | 100-year flood | lplain
eam/Lake/Pond ar | | | | | | | pts Groundv | vater
al Intermittent Si | urface Wate | | - | | pts
pts | Wetland/Uplan | | 10 Huma | an Land Use | · <u> </u> | | | ├── ┼─ | -' · | al Surface Wate | | | | <u> </u> | pis | Riparian Corri | · · · · · · · · · · · · · · · · · · · | • | | | | | 3c. Sel | lect the dom | inant duratio | n of | 30 | . Che | ck pa | st or | ongoing hyd | rolgic alteration | ns in or | r near Wet | land. | | | | | ion, or select
rage (4 pts m | | | | | | | adjoining optio | | | | | | | | ently inundated | 197.) | | ditch(s)
tiles(s) | | | weir(s)
stormwater înpu | | ηġ | ∏dredg
□ othe | , • | | | | Permane | ently Saturated | to | | dikes(s | No | | channelization | joad bed/R
s Apparent: No sign | | rallon(s) and/or | ngahinn etmor | | | 1/3 | Regulari | y inundated | | | 8 pt | alter | alion is r | raie | | | | | | | 2 | Seasona Seasona | y Saturated to
illy Inundated | | | (6 p) | | | | ological alteration(5) occur
or hydrological alteration | | | ericar to Uhe | | | 1 | | illy Saturated in
Inches of Soil | the | | 4 pts | | | | ant hydrological atteration
or hydrological atteration | | | prior to the | | Sub
This | notal
page | | | | L. | 1 pt | Rec
20 ye | eni or
es pro | No Recovery: | Multiple significant hydroandlor significant alterat | ological all
lon(s) is on | erations have or
going | ocured in the | | _ | | | | | | | | | | | | | | |------------------|-------------------------|---------------------------|---|--|--------------|-------------------------------------|-------------------------|--------------------------|------------------------|------------------------|-------------------------|---|---------------------------------------| | 10 | Metric | 4. Hal | itat Alterati | on and Habita | t Stru | cture | Devel | pmen | t (20 p | ots ma | ix) | | | | 70 pis
max | | alue, or
n
entation | | /disking | | e (4 pts
ad vehicl
ruction ve | max)
e use | | | | | | | | | 4 p | No S | ubstrate Disturb
g minor disturbance i
vered: significant | ance Apparent: N | o significan | nt disturbar
ore than 20 | years prio | f to the | dev | elopm/ | | tland's habitat
select adjoinin
ax) | | | | 2 p | | | golficani substrate distui | | | | prior | | | Exceller | ni | · · · · · · · · · · · · · · · · · · · | | | | Paca | | ngoing minor substrate d
Pry: Multiple significant | | | | | | 5 pts | Good
Fair | | | | | 1 p | in the 2 | O years prior to the a | ssessment andlor significant | icant distur | pauce is o | ngolng | a.uireo | L | (pt) | Poor | | | | | 4b. Che | ck past | or ongoing h | abitat alteration | | | | | | | | | | | | ⊠ barner
□ selecii | /road bed/l | | wing or shrub remov
arse woody debris re | | | | nenVnuisa
ical treatn | | | redging
lling/gradin | famii
g Dother: | | | | Clearce | utting | <u>□ 90</u> | ezing | | _ sedim | entation | | | □р | lowing/aisl | - | | | | 9.0 | | | Apparent: No signifi | | | | | | | | | | | | (6 pt | | | nabitat alteration occurre
Dilloant trabitat alteration | | | | | | | | _ | onal | | | 1 pt | <u> </u> | | ry: Mulfiple significant | | | | | | | - | | s unigoing | | | | | | | | | | | | | | | | | 5 | Metric | 5. S pe | cial Situatio | ns (20 pts ma | x) | | | | | | | | | | 20 pls
max | 5a. Add | 10 pts i | f any of these | situations app | aly | 5b. | Add 5 | pts for | Fores | ted W | etland | | | | 11104 | Hig | h Ecolog | ical Value (see l | varrative Rating at
ated Critical Habit | bove) | | Exhibi
Stem Di | ls combi | ned car
≥3 in to oi | opy col | /er from a | any group(s) of tre | es. | | | | | | atened or Endange | | 50 | | pts for | | | | | | | | | | nal species
3 Natural Comp | nunity Type (at least | | <u> </u> | _ | ···· | | | | adius low-permea | bility surfaces? | | | 5 80 | res or 25% o | i Welland) | , ,, . | | En | | | | | | | | | | | | | es or 25% of Welland)
ested Wetland (at le | 2016 | 50. | | | | | | y Wetland
r-configuous and | either: | | | acre | s or 25% of 1 | Welland) | • | | | 1) A st | ormwate | r treatm | eni por | id excava | ited from upland o | D r | | | | Great Far | es Coastal Wet | IZIIU | | <u></u> | 2) Mor | e than 78 | 5% cove | ered by | highly-in\ | vasive vegetation | (See Metric 6c) | | 5 | · | | | spersion, and | | | | | | · | | | | | 20 pts
max | | | over score for
Lassign point | r each Vegetations (9 ots max) | on | 6b. | | te the t | | | | l assign points | (3 pts max) | | | | | 1 | high haline | pts | | 2 pts | Modera | te: 1.0 | acres to | <2,5 acr | es | | | | | >25% of | Native species
dominate coverage | BAYETSRY | ple | | 1 pt | Low: 0.
Absent: | | | acre | | | | | - | Wetland | provisive or non- | moderale to both | | | (0 pt) | | | | ·· · - ·- | · · · · · · · · · · · · · · · · · · · | | | | Vegetation | | native species
dominate coverage | I I I I I I I I I I I I I I I I I I I | pts | 6c. | | | | | e of hig
Aerial Co | hly invasive s | pecies | | | Contronent
6 >% acre | | Naiwe species | moderate to high | D11 | | 1.pt 0 pt) | Nearly A | | | | | | | | | <25% c4 | dominate opasiste | hater thireisny have relieve decessly his | p; | | | Sparse: | | | | | | | | | Wettend
eres | ENVESIV€ OF MON- | moderale native | ρl | | | Moderat
Extensiv | | | | | | | | <u> </u> | | domininte coverage | fow native diversity 0 | pl | <u> </u> | | | | | | | | | | | >25% 6' | Native species | moderate to high native diversity 2 | ρŧε | 6d. | | one ho
High De | | | | n option (5 pts | max) | | | Vegetation | Welland | gominate covesade | low native decembly 1 | DL | | | Moderal | | | 3131011 | | 51 () | | | Component
15 (% acre | | invasivo or non-naliye
_coverage | species dominate 0 | C) | | 3 pts | Interspe | rsion | | | NOV (6) | 165 | | | | <25% of Wel | iend area | 0 | p1 | 1 | 1 7 00 | Low Deg | gree of i | nterspe | rsion | | | | | | 3 pts F | orest Overstory | | | | 0 pt | No Inter | spersio | n | | MODERAL MODER | An And | | | 100 | 3 pts 5
3 pts F | Shrub/Sapling C
Terbaceous Cor | omponent | | ا مع | Datava | ine the | | nt cs L | obit-t | eatures in the | Notion d | | | -, - | | | | | | | ime trie
n polnt | | | | eatures in trie | ASURIO | | $\supset \Box$ | | | ic, Recreation | onal and | | | osent (0
<1 per acri | | | e (1 pt)
er scre or | | | Dense (3 pts)
> 10 pai acre or | | | | | (3 pts max) | | | | r 5% of an | ea . | 5% to 10 | % of area | 10% | to 50% of area | >50% of area | | 3 pis
mex — I | / 1 pt | Scenic \ | y and assign p | ointz | | P | 0 to 3 | | | | | Mounds % of area | | | | / 1 pt | | value
ional.Value | | | | 0 to 3 p | | | | | /D) # persore
g Trees (12 in DB | H) #peracre | | | 1 pt | | Historical Value | · · · · · · · · · · · · · · · · · · · | | Ĭ | 0 to 3 | | | | | ry Habitat % of are | | | | | | | | | | | _ | | | | | | | DEO. Land and Water Manage | i i | MICHIGAN | Rapii | | SMENT METHOD
Id Form Versio | | NDS (MIRAM) | |--|---|--------------------------------|---------------------|---|---|---|--| | Site Name: FADO | a Head VE | Evaluato | r: 💬 | 1 /6C | | Date: | 12/25/60 | | | the Wetland was revie | | ″ | areas imp | ation within the W
acted <u>within the</u> p | ast 5 years? | YES 💢 NO | | Note: The Evaluator mus | be trained in the MiRAM a | nd should refer | to the | MiRAM Rali | ng Form and User Ma | inual when using th | nis form. | | | | | | ve Ratin | | | | | If any of the following of | ueslions are answered yes | , the Welland is | s rated. | as high func | lional value and use o | Ine Quantitative | Rating is not necessary. | | | Vetland located within a
at suitable for either th | | | | | | ☐YES ☑NO | | | R's Endangered Specie | | | | | | | | | reatened or Endangere | | | | | | XYES NO | | 3. Is more than 5 acre | es or more than 25% of | the entire W | etland | comprise | ed of a Rare Wetla | nd |
1 / | | Community Type? Cit
5 agres and less than 25% o | neck all Rare Wetland C
f the wetland, the rare commi | community 1
unity should be | ypes
solit off | below. f ()
and evaluate | ne Rare Wetland Comm
ed separately. | unity is less than | ☐ YES () NO | | S1 or S2 Natural | Community Type | Southern Bo | g [| 🔲 Old-Gro | wth/Mature Foreste | | / * | | | etland within 1000 fee | t of the Ordi | nary H | igh Water | Mark of any of the | Great Lakes, | ☐YES ☐NO | | ncluding Lake St. Cla | 1177 | | | . | | <u></u> | | | | | Qua | ntitat | ive Ratir | na | | | | Circle the appropriate poi | nt value(s) and assign the s | core for each r | netric. | Determine t | he subtotal for each n | netric and add to de | etermine the final score. | | _ | Wetland Size and Dis | | | | | | | | | | • | | ,, | | | | | 9 pts
max 1a. Select a | size class (6 pts max) | | - | 1b. Using | the NWI, select a | scarcity class | (3 pts max) | | 6 pts | ≥50 acres | | | 3 p)s | 0 to 20% of surroun | iding 2-mile radius | is wetland | | 1 | 25 acres to <50 acres | | _ | 2 pts | >20 to 80% of surro | | | | | 10 acres to <25 acres | | _ | 1 pt | >80% of surroundin | g 2-mile radius is v | velland | | \ \ \-'-/+ | 3 acres to <10 acres | | _ | | | | | | | 4 acre to <3 acres | | - | | | | | | [0 pi] i | ess than ¼ acre | | | | | | | | | | | | | | | | | Metric 2. E | Suffers and Intensity | of Surroun | ding l | _and Use | (12 pts max) | <u> </u> | | | 12 pts 2a. Using an | aerial photo, select th | e most | 7 1 | 2b. Usina | an aerial photo, s | elect the surrou | inding land uses that | | | buffer width (6 pts max | | ╛ | | >25% of the total | | | | 6 pts V | Vide: ≥150 ft around perimi | eter | | 6 pts | Very Low Intensity:
wildlife area, other wetland | | grassland, plaine, designated | | 4 pts) A | ledium: 75 to <150 ft arour | nd perimeter | 7 | 4 pts | Low Intensity: Shoubt | and/young (orasi, recent | selective logging, bay field, lightly | | | | | -{ [| | managed parkand, old field Moderately High Inte | 4. lightly grazed pasture,
BDSity (Resulential & te | one lane road/two tract: was? manicured parkiene, golf | | | larrow: 25 to <75 ft around | | _ | 2 pts | course, conservation tillagu | r, recent clear-cut (<10 yr | s.). Iwo lane road | | | 'ery Narrow: 0 (no buffer) to
erimeter | o <25 it around | ' [j | 1 pt | High Intensity: Comm
pasitive, row crops, multi-la | nercial, industrial, high-de
ine paved road, construct | nsity residential Treavity grazed
ion activity, parking lot, mining | | | | | | ······································ | | | | | S Metric 3. H | ydrology (26 pts ma) | c) | | | | | | | 6 pis 3a Caloat all | | | -
¬ , | | | | | | nax Sa Select all | sources of water for W | etiano | ╛┟ | | all wetland conne | ctions that app | ıy | | | recipitation
roundwater | | - | 2 pts | 100-year floodplain Between a Stream/L | oko/Road and Hum | and and the district | | h | essonal Intermittent Surface | Mater | - | (2 pts) | Wetland/Upland Con | | nan Land Use Taylor | | | erennial Surface Water | , Marci | - | 2 pts | Riparian Corridor | ilbiex | | | <u></u> | | | | | | | | | | e dominant duration of
aturation, or select all t | | . Chec | k past or | ongoing hydrolgic | alterations in c | or near Wetland. | | | & average (4 pts max) | 1 [| sign a | | | ning options & a
□ poli⊪source | average (8 pts max) | | | So (4 hrs may) | | anch(s)
tites(s) | 7- | | □ point-source
□ filling/grading | □ other: | | co-dominate | seman antibuliaries de feed | | | "h . | | noad ped/RR grade | | | co-dominate | ermanently Inundated | | dikes(s) | | | | | | co-dominate | ermanently Saturaled to | | 8 pts | No Hydrol | logic Alterations Appa | | Realion(S) and/or ongoing mino: | | co-dominate 4 pls Pe | <u> </u> | | 8 pts | No Hydrol
alteration is r | logic Alterations Appa
are | arent. No significant all | eration(s) andfor ongoing mino: | | co-dominate 4 pls Pr 3 pls Rr 2 pls Rs | ermanently Saturaled to
egularly Inundated
egularly Saturated to
easonally Ihundated | | T *** | No Hydrol
alteration is r | logic Alterations Appa | RIGHT. No significant all | eration(s) and/or ongoing minor | | co-dominate 4 pls Pr 3 pls Rr 2 pts Sr 3 st | ermanently Saturated to
egularly Inundated
egularly Saturated to
easonally Ihundated
easonally Saturated in the | | 8 pts | No Hydrol
alteration is r
Recovered
assessment : | logic Alterations Appa
are
d: Significant hydrological a
and/or ongoing minor hydrologic
lg: A single significant hydr | affect. No significant all
alteration(s) occurred mos
opical alteration is only oc
relepical alteration occurre | eration(5) andfor ongoing minor te than 20 years prior to the casional | | co-dominate 4 pls Pr 3 pls Rr 2 pls St | ermanently Saturaled to
egularly Inundated
egularly Saturated to
easonally Ihundated | | 8 pts
6 pts | No Hydrol alteration is r Recovere assessment assessment, | logic Alterations Appa
are
d. Significant hydrological a
and/or ongoing minor hydrologic
ig: A single significant hydrol
and/or ongoing minor hydrol | afent: No significant all
alteration(s) occurred more
opical alteration is only oc
relegical alteration occurre
opical afferation is freque | eration(s) and/or ongoing minor te than 20 years prior to the casional ad within 20 years prior to the | | 14 | Metric | 4. Ha | bitat Alterați | on and Hab | itat Str | ucture | Devel | opment | (20 pts | ma | x) | | | |---------------|-------------------------|---------------------------|---|--|-------------------------------|--|------------------|-----------------------------|-----------------|------------------|--------------------------|---------------------------------------|--------------------------------| | 20 pts
max | 4a. Ch | eck pas | l or ongoing s
select adjoin | substrate/soi | disturi
8 avera | bance. A | Assign | a | | | | | | | | arosic | n | dredgin | g | Off- | road vehici | le use | | | | | | | | | ☐ sedim
☐ filling/ | | ☐ plowing
☐ intensiv | | □ cor | nstruction v | ehicle us | e | | | | | | | | 4 p | No S | ubstrate Disturb | ance Apparent | | | nce andici | - | | | | | itat structure | | | √3 p | | overed; Significant
smehl and/or ongoing | | | | | or to the | | | pts ma | | ining options & | | | 2 p | | Vering: A single s
assessment, and/or o | | | | | s prior | | | Exceller
Good | nt | | | | 1 р | Recein the : | ent or No Recovi | Pry: Multiple signifi
ssessment and/or si | cant substra
gnificant dis | ate disturbano
sturbance is o | es have o | goured. | 3 | _ | Fair
Poor | ., | | | | | | | | | | | | select ac | djoin | ing opt | | rage (9 pts max) | | | | /road bed/
ive culling | - = | wing or shrub ren
arse woody debri | | | | ment/nuisai
nical treatm | | | edging | | arming | | | ☐ clearc | • | D gr | • | a ICHIUVA | ☐ sedim | | ncai neam | 1811 | | ing/gradin
owing/disk | | ither: | | | 9 p | ls No H | abitat Alteration | Apparent: No si | poileant att | eration and/o | r angoing | ilerelle ronim | on is rare | | | γ | | | | ,6 p | S Reco | vered: Significant | habitat alteration occ | wirred more | Іһал 20 уваг | s prior to l | he assessme | ant and/or ong | oing m | inor habitat | alterations only o | ccasional | | | (3 ₇₀ | e Reco | vering: A single si | gnificant habital alter | ation occur | red within 20 | years pro | r lo (ne asses | ssment, andro | or ongo | ng minor a | lleration is treque | ni | | | 1 p | Rece | nt or No Recove | ry: Multiple signific | cani habitat | afierations ha | ve occum | ed in the 20 y | ears prior to l | lhe ass | essmeni ar | dor habitat allen | ation is ongoing | | | | | <u> </u> | | | | | | | | | | | | 5 | Metric | 5. Spe | cial Situatio | ns (20 pts n | nax) | | <u> </u> | | <u> </u> | | | | | | 20 pls
max | | | if any of these | | | 5b. | _ | pts for | | | | | Lienn | | | | Contains | ical Value (see I
USFWS design | ated Critical Ha | bitat | | Stem D | BH must be a | eo carropy | Kasa u
A coat | er mom a
res Must b | iny group(s) o
se al least 5 acres | or 25% of Wetland | | | | | State-listed Thre
nat species | alened of Enda | ingerea | ; | _ | pts for | | | | | | | | | S1, S2, S | 3 Natural Comm | nunity Type (at 8 | east | 5 | ls >50 | % of the li | andscape | іла 1 | 1000-ft ra | adius low-per | meability surfaces? | | | | res or 25% :
Southern | of Wetland)
1809 (al least 5 acr | ne or 25% of Micilan | et i | 5d. | Subtr | act 10 no | oints for | Low | Qualit | y Wetland | | | | | Old-Groy | th / Mature For | ested Welland (| at least 5 | | | | | | | -contiguous | and either. | | | açn | s or 25% of | Welland) | | | | 1) A s | lormwaler | treatment | l pond | d excava | ted from upla | nd or | | | | Great Cal | kes Coastal We | lang | | J <u>L</u> | [2] Mor | e than 75 | % covered | d by h | ighly-inv | asive vegeta | lion (See Meinc 6c) | | 13 | Metric | 6. Veg | etation, Inte | spersion, a | nd Hal | bitat Fe | atures | (20 pts | max) | | | | | | 20 pts
max | | | over score fo | | | 6b. | | | | | | assign po | ints (3 pts max) | | | Compor | ient and | assign point | | <u> </u> | | 3 pts
2 pts | High: 2.
Moderate | | | | | | | | - | 1 | Nahye species | nigo ne bve
cuversity | 3 ptr | / | 1 of \ | Low: 0.2 | | | | 69 | | | | i | >25% of
Welland | dominate coverage | moderate to low | 2 pr | | 0 oc | | <0.25 acr | | | | | | | | qres | ereasive or nov- | moderate to high
neitive diversity | 7 pts | 50 | Estima | to the t | atal cave | arano | of blo | hlv invasiv | n speciet | | | Vegetalion
Combonent | | dainnaic coverage | low native diversity | 1
(5) | 100. | 1 pt | | Absent < | | | | e species | | | # >% 5G# | | Маруи вресия | imbdatate (c neg): | 2 016 | | 0 pl | | bsent: <5 | | | | | | | | <25% of | dominale coverage | halive diversity Now region diversity | 1 04 | | | Sparse: | | | | | | | | | Waliand
area | myasive or poh- | moderate naive | 1 pt | | | Moderate | | | | | | | | [] | | native species
dominate coverage | diversity Inv native diversity | 0 pl | L | -5 pts | Extensive | e: >/5% / | Авлаі | Coverag | je | | | | | | | mederate to high | 2 pts | 6d. | Select | | | | | n option (5 | pts max) | | | | >25% of
Wellend | Mative species dominate coverage | naive diversity | - | | 5 pts | | ree of Inte | | rsion | | | | | Vepelation | 2193 | i wasive or non-naiwe | low gative diversity
species dominate | 1 pr | | 3 pts | | Degree o | of | | | | | | Component
is <% acre | | COVELAGE | | Орг | 1 (1 | | Intersper | | | | 1834 0 | TOW THE | | | <u></u> | <25% of We | lend erea | | 0 14 | li | 1 pl | Low Degi | ree of inte | rsper | sion | (🐑 (| (E | | | | | orest Överstory | | | | 0 pt | No Inters | persion | | | INCOME | MODERATE INGS | | | | | Shrub/Sapling C | | | <u> </u> | D-4 | | | | . i. i 4 * | | Ca Maria | | | 7.1000 | 3 pls F | lerbaceous Cor | nbouetit | | i | | | | | | eatures in t | he Wetland | | 7 | Mintrin 7 | 6 | ie Dagrasti | | - -7 | | assig
sent (0 | n points | Sparse (1 | | | rate /2 etc) | Denso (3 sto) | | 4 | | | ic, Recreation | onai and | j | | <1 per acc | ė | 1 to 6 per aci | re or | 6 10 1 | erate (2 pts)
i0 per acre or | Dense (3 pts) > 10 per acre or | | | | | (3 pts max)
y and assign p | nints | ŀ | | r 5% of ar | | 5% in 10% of | | 10% t | o 60% ot erea | >50% of area | | 3 pts
mex | | Scenic V | | —————————————————————————————————————— | | 구 | 0 to 3 | | | | | Mounds % of | \$res | | , | (/ 1.pt) | | value
ional Value | , . | | 2 | 0 to 3 | | | | | D) # per acre | DRW\ + | | | 100 | | Historical Value | | | | 0 to 3 | | | | | g Trees (12 in
ry Habitat ‰ | DBH) # pet acre | | L | <u></u> | | TOTO IDEE TOTOL | | | اللبيا | 0.00 | A10 VIII | MINDING DI | GGUIII | grituise | y Habitat % | th alex | | DEO
Land an | MICHIO | BAN R | API | | SMENT METHOD FOR V | VETLAN | IDS (MIRAM) | |----------------|---|--------------------------|-------------------------|---|--|---|---| | Site Na | | luator: | 973 | ····· | | Date: \ | 12/20/04 | | ' ' | t. how much of the Wetland was reviewed? | | - [: | areas imp | tation within the Wetland I
acted within the past 5 ye | peen alte
ars? | red and/or buffer
YES ②NO | | Note: Th | ne Evaluator must be trained in the MiRAM and should | d refer to | the ! | MIRAM Rat | ing Form and User Manual whe | n using thi | is form. | | المما | of the following aventions are provided up. the West | Nari | rativ | ve Ratin | g | 4% _ 45 F | N-15 1 | | ∐1. Is ar | of the following questions are answered yes, the Weiry part of the Wetland located within an area | design | ated | as Critic | al Habitat <u>and</u> does the We | etland | TES NO | | 2. Base | y contain habitat suitable for either the Pipin
ed on the MDNR's Endangered Species Asse | g Plove
essment | r or
t We | the Hine's
b site and | Emerald Dragonfly? | - | | | federal/ | state-listed Threatened or Endangered plant | or anir | nal s | species or | ccur within the Wetland? | | XYES □ NO | | Commu | ore than 5 acres or more than 25% of the ent
inity Type? Check all Rare Wetland Commu-
nd less than 25% of the wetland, the rare community sho
1 or S2 Natural Community Type Southe | nity Typ
uld be spi | oes k
Ilt off_ | pelow. If t | he Rare Wetland Community is ≀e | | □ YES \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 4. Is an | y part of the Wetland within 1000 feet of the
ng Lake St. Clair? | Ordina | ry Hi | gh Water | Mark of any of the Great I | akes, | ☐YES ☐NO | | meigan | | | | | | <u> </u> . | | | Circle th | e appropriate point value(s) and assign the score for | Quant
each mei | itati
Iric. I | i ve Rati i
Determine t | ng
he subtotal for each metric and | add to del | termine the final score | | 6 | Metric 1. Wetland Size and Distribution | | | | | <u> </u> | is the life body. | | 9 p(s | 1a. Select a size class (6 pts max) | |
] [| 1h Using | the NWI, select a scarcif | t clace (| 3 nte may) | | Max | 6 pts ≥50 acres | | | /3 p)s | 0 to 20% of surrounding 2-mi | | | | | 5 pts 25 acres to <50 acres | | | 2 pts | >20 to 80% of surrounding 2- | mile radiu | s is welland | | | 4 pts 10 acres to <25 acres | | į | 1 p1 | >80% of surrounding 2-mile r | adius is w | etland | | | 3 pts 3 acres to <10 acres | | | | | | | | | 2 pts 1/2 acre to <3 acres | | | | | | | | | o pr Tiess war ya dese | | | | | | | | 8 | Metric 2. Buffers and Intensity of Sur | roundi | ng L | and Use | (12 pts max) | · | | | 12 pts
max | 2a. Using an aerial photo, select the most appropriate buffer width (6 pts max) | | ſ | 2b. Using | an aerial photo, select th | e surrou | nding land uses that | | | 6 pts Wide: ≥150 ft around perimeter | | <u> </u> | 6 pts | >25% of the total land use
Very Low Intensity: Maturing for | esi natural gr | | | | 4 pts Medium: 75 to <150 ft around perime | eier | | 4 pts | wildlife area, other wettand, take or river Low Intensity: Shrubland/young to | rest, recent se | elective logging, hay field . lightly | | | 2 pts Narrow: 25 to <75 ft around the perin | | . | 2 pts | managed parkland, old field, lightly graze Moderately High Intensity. Re | ed pasture, o | ne jane road/two track | | | Very Nacrow: D (no buffer) to c36 ft a | | | | course, conservation (diags recent clear
High Intensity: Commercial indus | r-cul (<10 yrs | j. Iwo lane toad | | | 0 pt perimeter | | | 1 pt | pasture, row crops, multi-lane paved ros | | | | 12 | Metric 3. Hydrology (26 pts max) | | | | | ····· | | | 26 pts
max | 3a Select all sources of water for Wetland | | [: | 3b. Select | all wetland connections t | hat apply | y | | | (1 pt) Precipilation | | | 2 pts | 100-year floodplain | | | | | 2 pls Groundwater | | [
 - | 2.0L§ | Between a Stream/Lake/Pond | end Huma | an Land Use | | | 27ts Seasonal Intermittent Surface Water 5 pts Perennial Surface Water | | - | · · · · · · | Wetland/Upland Complex | | ·· | | | | | _ L | 2 pts | Riparian Corridor | | | | | 3c. Select the dominant duration of inundation/saturation, or select all that | | | | ongoing hydrolgic alterati
de, or select adjoining opt | | | | | | 1 (4.3) | | hourt Agn | ac. ar sejeta abildining ODI | iulis 👁 a' | verage (o pts max) 📋 | | | co-dominate & average (4 pts max) | dito | h(s) | | weir(s) point-so | | □dredging . | | | | ditc | s(s) | 10 | weir(s) point-so
stormwater inputs filling/gra | urce
ading | □dredging □ other. | | | co-dominate & average (4 pts max) 4 pts Permanently inundated | ☐ ditc | s(s)
es(s) | | weir(s) | urce
ading
I/RR grade | Olher. | | | 4 pts Permanently Inundated 3 pts Permanently Saturated to Regularly Inundated | ☐ ditc | s(s) | No Hydro | weir(s) | urce
ading
BRR grade
ignificant after | other | | | co-dominate & average (4 pts max) 4 pts Permanently inundated 3 pts Permanently Saturated to Regularly Inundated 2 pts Regularly Saturated to Seasonally inundated | illes | s(s)
es(s) | No Hydro | weir(s) point-so
stormwaler inputs filling/gra
channelization road ber
logic Alterations Apparent; Nos | urce ading biRR grade ugnificant after | other | | | co-dominate
& average (4 pts max) 4 pts Permanently Inundated 3 pts Permanently Saturated to Regularly Inundated Regularly Saturated to | i dito | s(s)
es(s)
d pls | No Hydro eleration is of Recovere assessment. | weir(s) point-so stormwater inputs filling/grace filling/grace formwater inputs filling/grace formwater inputs filling/grace formwater formwat | urce ading WRR grade ugnificant after excurred more on is only occurred | alicut(s) aud/or ongoing minor than 20 years prior to the asional | | | | | | _ | | | |---------------|---|---|--|---|--|--| | 14 | Metric | 4. Hal | oitat Alteratio | on and Habi | itat Str | tructure Development (20 pts max) | | 20 pts
max | | alue, or
natelion
rading | select adjoini ☐ dredging ☐ plowing ☐ intensive | ing options &
g
Idisking
e grazing | k average off- | | | | 4 pt | s ongoin | g minor disturbance :
vered: Significan: | s rare
substrate disturbanc | e occuned | d more lhan 20 years prior to the solv occasional development, or select adjoining options & average (7 pts max) | | | " | Dece | ment and/or ongoing | | | contract within 20 years prior 7 pts Excellent | | | 2 pt | Rece | essessment, and/or or
oil or No Recove | ngoing minor substra
Ery: Multiple signific | ile distorbai
-
cant substra | rate disturbances have occurred 3 pts Fair | | | , p | in the 2 | 20 years prior to the s | ssessment and/or sig | anificani dis | isturbance is ongoing 1 pt Poor | | | 4b. Che barner selectiv clearcu 9 pt 6 pt 3 pt 1 pt | road bed/l
re cutling
tung
s No H
g) Reco | RR grade | wing or shrub rem
arse woody debrit
azing
Apparent: No sign
abitat allemiton occ
philicant habitat allem | noval
s removal
philicant alto
uned more
alion occum | Assign a point value, or select adjoining options & average (9 pts max) Inutrient enrichment/nuisance algae dredging tarming Introduction Diffing/grading other: Interaction Diffing/grading other: Interaction and/or ongoing minor alteration is rare | | 3 | , | | | | | | | 10 | Metric | 5. Spe | cial Situatio | ns (20 pts n | nax) | | | 20 pts
max | 5a. Add | 10 pts | f any of these | situations a | pply | 5b. Add 5 pts for Forested Wetland | | | | Contains | ical Value (see f
USFWS design
State-listed Thre | ated Critical Ha | bitat | Stem DBH most be ≥3 in to qualify as a tree. Must be at least 5 acres or 25% of Wettand | | | | | nal species
3 Natural Come
of Welland) | nunity Type (a) le | east | is >50% of the landscape in a 1000-ft radius low-permeability surfaces? | | | | Southern | Bog (at least 5 acre | | | 5d. Subtract 10 points for Low Quality Wetland Is the Wetland less than 1 acre and non-contiguous and either: | | | асте | s or 25% of | | | | 1) A stormwater treatment pond excavated from upland or 2) More than 75% covered by highly-invasive vegetation (See Metric 65) | | 15 | Metric (| 6. Veg | etation, Inter | spersion, a | nd Ha | abitat Features (20 pts max) | | 20 pts
may | | | over score for
assign point | | | 6b. Estimate the total open water and assign points (3 pts max) 3 pts High: 2.5 acres or more | | | | | Natura species | high native
diversity | 3 pls | 2.pis Moderate: 1.0 acres to <2.5 acres
(1 pt) Low: 0.25 acre to <1.0 acre | | | | >25% of
Welland | dominato opverage | moderate to low
native diversity | \$ pts | 0 pt. Absent: <0.25 acres | | | Vegetalier | Eseã | invasive of non-
halive species | moderate to high
naine diversity | 2 pls | 6c. Estimate the total coverage of highly invasive species | | | Companent
x > 1/2 acre | | gartynalc Coverage | iow native diversity
moderate to aigh | 2 pis | 1 pt Virtually Absent: <1% Aerial Coverage 0 pt Nearly Absent: <5% Aerial Coverage | | | | <25% of | Malive Species dominate coverage | fative diversity
townshive diversity | 1 pt | (-1 pl) Sparse: 5-25% Aerial Coverage | | | | Wetand
area | invasive or non- | mederale native
diversity | 1 pl | -3 pts Moderate: 25-75% Aerial Coverage
-5 pts Extensive: >75% Aerial Coverage | | | | | najiye species
cominale coverage | low native diversity | 0 pl | | | | | >25% of | Nabyć species | moderate to high
native diversity | 2 pt; | 6d. Select one horizontal interspersion option (5 pts max) 5 pts High Degree of Interspersion | | | √egelais;o | Websid
area | dominaté coverage | townstrue diversity | 1 pl | 3 pts Moderate Degree of | | | Component
is <% acre | | coverage
coverage | species dominais | 0 рх | Interspersion And the second | | | | <25% of We | | | 0 pt | | | | | | orest Overston
Shrub/Sapling C | | | 0 pt No Interspersion Moodule Modelle Modelle | | | | - | Herbaceous Con | | | 6e. Determine the amount of habitat features in the Wetland and assign points (12 pts max) | | 7 1 | Metric 7 | Scen | ic, Recreati | onal and | | Absent (0 pt) Sparse (1 pt) Moderate (2 pts) Dense (3 pts) | | السلب | Cultural | Value | (3 pts max) | | | <1 per acre | | 2 pls | | | y and assign p | oints | | 1 0 to 3 pts Hummocks/Tussocks/Tree Mounds % of area | | mēx | 110/ | Scenic ' | Value
ional Value | | | 3 0 to 3 pts Coarse Woody Debris (CWD) # pcracts 3 0 to 3 pts Large Living/Dead Standing Trees (12 in DBH) # peracts | | | 1 pt
1 pt | | Historical Value | | | 2 0 to 3 pts Large Living/Dead Standing Trees (12 in DBH) #peracre | | | | | | | | | | | t Water Maπa | | | | | | | FI | eld F | orm Ve | ersion | | | - | - | |---|---|---|--|--|--|--------------------------------|---------------------------------------
--|--|--|--
--|--|---|--| | Site Nar | ne: MY | £ 15 | 1360 | <u> V 6</u> | Evi | luator: | <u>F(1)</u> | J <u>C</u> J | | | | | Date: | 12/22 | 40G | | | how much | | | | | 1.0 | a a | reas im | pacted | <u>within</u> ! | the pas | t 5 years | <u>\$</u> ? 🗗 | red and/d
ÝES □ | | | Note: The | e Evaluator m | ust be | rained in | the MiRAN | l and shou | ild refer I | o the M | RAM Ra | ting Fa | m and Us | er Manu | Jal when u | ising thi | s form. | | | | | | | | | Na | rrativ | e Ratii | na | | | | | | | | | of the followin | | | | | etland is | rated as | s high fun | clional | | | | | ating is no | necess | | | y part of the
contain ha | | | | | | | | | | | | and | ☐ YE | s ∭ri | | | d on the MI | | | | | | | | | | | | - |) - | /1 | | ederal/s | state-listed | Threat | ened or | Endang | ered plar | it or an | imal sp | ecies o | occur v | vìthin th | e Wetia | and? | | X YE | S 🔲 I | | 3. Is mo | re than 5 a
nity Type? | Chool | r more t | han 25%
• Metlan | of the er | itire We | tland (| compris | sed of | a Rare V | Vetland | ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | | | 4.7 | | acres and | d less than 25! | % of the | wetland, f | the rare con | nmunity sh | ould be s | plit off a | nd evalua | tne Kar
ited sep | e welland i
erately. | Commun | iity is less i | than | ☐ YES | ا 🔯 د | | | or S2 Natu | | | | South | | | | | | | | | | | | | / part of the
g Lake St. (| | ind with | ו טטטר מוו | eet of the | Ordina | ary Hig | in Wate | r Mark | of any | of the (| Freat Lai | kes, | ☐ YES | ₹ <u>₽</u> | | , o a a a a a a a a a a a a a a a a a a | g Epito oti t | | | | • • • | . | | | | | | | | | - | | | | | | | | | | re Rati | | | | | | | | | | appropriate | | | | | | | | the sul | ototal for e | ach mel | ric and ad | ld to det | ermine the | final sc | | 3 | Metric 1. | Wet | and Si | ze and D |)istribut | ion (9 | ots ma | ax) | | | | | | | | | 9 pls | ta. Select | f a ciz | - class (| 6 atc ma | ~ 1 | | 7 [| th their | or the | ADA/I col | ant a c | onenitu o | loop (2 |) mtn | 4) | | max | 6 pts | | | o bra ma | ^/ | | ┨ ├ | 13 pu | | | | ng 2-mile r | | pts max | ., | | | 5 pts | - | res lo <5 | i0 acres | | | 1 | 2 pts | _ | | | | | is wetland | | | | 4 pts | - ` | res to <2 | | | | 1 | (1 pl | | | | 2-mile radi | | | <u>-</u> | | | 3 pls | 3 acr | es to <10 | acres | | | ┨ ┕ | | | | | | | | | | | 1 1 | 1 | | | | | | | | | | | | | | | | 2 pts | _ ¼ ac | re to <3 a | cres | | | 1 | | | | | | | | | | | 2 pts | | re to <3 a
han ¼ ac | | | | | | | | | | | | | | Total society | | | | | | |]
]
 | | | | | <u></u> | | ·, -· | | | | |) less t | han ¼ ac | re | ty of Su | rround | ing La | and Us | e (12 | pts max | | | | | | | 12 pis | Metric 2. |) less t | han ¼ ac
ers and | re
i Intensi | | | | · · · · · | ' | • | · · · · · | ect the s | Heron | nding lan | ud usas | | | D D | Buffe
an aer | han ¼ ac
ers and
lal phot | intensi | the mos | | | b. Usin | g an a | erial pho | oto, sel | | | nding lan | | | | Metric 2. | Buffe
an aer
te buff | han ½ ac
ers and
rial phot
fer width | intensi | the mos
nax) | | | b. Usin | g an a
e >25° | erial pho
6 of the
Low inter | oto, sel
total la | nd use 8 | avera | | max) | | | Metric 2. 2a. Using appropria 6 pts | Buffe
an aer
te buff
Wide: | ers and | i Intensi
to, select
n (6 pts m
around per | the mos
nax)
imeter | t . | | 2b. Usin
compris | g an a
e >25°
Very
wilding | erial pho
6 of the
Low
Inter
area other
Intensity: | oto, sel
total la
nsity: Ma
welland la
Shrubland | nd use 8
sluring forest,
Le or river
Dyoung forest | natural gra | ige (6 pts
assland, prairi
alective loggin | max)
e, designat
g, hay field | | | Metric 2. 2a. Using appropria 6 pts 4 pts | Buffe
an aer
te buff
Wide | ers and vial phot fer width 2150 ft | intensio, select
r (6 pts maround per | the mos
nax)
imeter
ound perin | t | | 2b. Usin
compris
6 pts
4 pts | g an a
e >25°
Very
wildlift
Low
mana | erial pho
6 of the
Low Inter
area other
Intensity: | oto, sel
total la
nsity: Ma
welland la
Shrubland
old field, li | nd use &
sluring forest,
ke or river
lygong forest
ighly grazed i | natural gra
t. recent so
pasture, or | nge (6 pts
assland, prairi
elective logging
ne tane road/to | rnax)
e, designat
g, hay field
we tract: | | | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts | Buffe
an aer
te buff
Wide:
Medit | ers and rial phot fer width ≥150 ft: um: 75 to w: 25 to | i Intensi
io, select
n (6 pts m
around per
n <150 ft arou | the mos
nax)
imeter
ound perin | t
neter
imeter | | 2b. Usin
compris | g an a
e >25°
Very
wildlis
Low
mana
Mod
cours | erial pho
of the
Low Inter-
erea other
Intensity:
ped parkland,
erately High, conservation | oto, sel
total la
nsity: Ma
welland la
Shrubland,
old field, li
gh Intens
on bliago, re | nd use 8 sluring forest, ke or river dlyoung forest ghtly grazed stily: Reside ecent clear-cu | natural gradical pasture, or ordinal & law of (<10 yrs.) | nge (6 pts
assland, prairi
elective loggin
ne tane road/to
ms. manicured
), two lane ro | e, designat
g, hay field
we tract:
I parkland,
ad | | 12 pts
max | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts | Buffe
an aer
te buff
Wide:
Medit | ers and rial phot fer width ≥ 150 ft; um: 75 to w: 25 to Narrow. € | intensio, select
r (6 pts maround per | the mos
nax)
imeter
ound perin | t
neter
imeter | | 2b. Usin
compris
6 pts
4 pts | g an a e >25° Very wildlis Low mana Mod course | erial pho for the Low Interestive Intensity: Intensity Conservation Intensity Intensity | oto, sel
total la
nsity: Ma
welland la
Shrubland
old field, li
gh Intens
on bliago, n | nd use 8 studing forest, ke or river diyoong forest ightly grazed Sity: Reside ecent clear-cu | natural gradient separature, of casture, o | age (6 pts
assland, prairi
elective loggin
ne tane road/to
ms. manicured
), two lane ro | e, designat
g, hay field
we tract:
I parkland,
ad | | | Metric 2. 2a. Using appropria 6 pts 4 pts | Buffe
an aer
te buff
Wide:
Medit
Narro | ers and rial phot fer width ≥ 150 ft; um: 75 to w: 25 to Narrow. € | i Intensi
io, select
n (6 pts m
around per
n <150 ft arou | the mos
nax)
imeter
ound perin | t
neter
imeter | | 2b. Usin
compris
6 pts
4 pts
2 pts | g an a e >25° Very wildlis Low mana Mod course | erial pho for the Low Interestive Intensity: Intensity Conservation Intensity Intensity | oto, sel
total la
nsity: Ma
welland la
Shrubland
old field, li
gh Intens
on bliago, n | nd use 8 studing forest, ke or river diyoong forest ightly grazed Sity: Reside ecent clear-cu | natural gradient separature, of casture, o | nge (6 pts
assland, prairi
elective loggin
ne tane road/to
ms. manicured
), two lane ro | e, designat
g, hay field
we tract:
I parkland,
ad | | | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt | Buffe
an aer
te buff
Wide:
Medit
Narro
Very I
perim | ers and rial photoer width ≥150 ft o um: 75 to w: 25 to Narrow. (eler | i Intensi io, select io (6 pts m around per < 150 ft an < 75 ft arou 0 (no buffer | the mos
nax)
imeter
ound perin
and the per
r) to <25 ft | t
neter
imeter | | 2b. Usin
compris
6 pts
4 pts
2 pts | g an a e >25° Very wildlis Low mana Mod course | erial pho for the Low Interestive Intensity: Intensity Conservation Intensity Intensity | oto, sel
total la
nsity: Ma
welland la
Shrubland
old field, li
gh Intens
on bliago, n | nd use 8 studing forest, ke or river diyoong forest ightly grazed Sity: Reside ecent clear-cu | natural gradient separature, of casture, o | age (6 pts
assland, prairi
elective loggin
ne tane road/to
ms. manicured
), two lane ro | e, designat
g, hay field
we tract:
I parkland,
ad | | mex 2 | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts | Buffe
an aer
te buff
Wide:
Medit
Narro
Very I
perim | ers and rial photoer width ≥150 ft o um: 75 to w: 25 to Narrow. (eler | i Intensi io, select io (6 pts m around per < 150 ft an < 75 ft arou 0 (no buffer | the mos
nax)
imeter
ound perin
and the per
r) to <25 ft | t
neter
imeter | | 2 pts | g an a
e >25°
Very
widdi
Low
mana
Mod
cours
High
pastin | erial pho
6 of the
Low Inter-
area, other
Intensity:
get partant
erately High
conservation
Intensity:
e, row crops. | oto, seltotal la
nsity: Mi
welland le
Shrubland
old field, li
gh Inter-
n pliage. "
Commerc
qualitate | nd use 8 sluning forest, ke of river flyoong forest ghtly grazed i sality: Reside ecent clear-cu tel industrial; paved road; c | L aversimated grant and a second seco | age (6 pts
assland, praint
plective loggim
he tane road/h
ms. manicured
), two tane, ro
sity resionnital
in activity, para | e, designat
g, hay field
we tract:
I parkland,
ad | | ÿ plu | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. | Buffe
an aer
te buff
Wide:
Media
Narro
Very I
perim | ers and rial photoer width ≥150 ft um: 75 to w: 25 to Narrow. (eter | intension, select
on (6 pts maround per
or <160 ft and
or <75 ft around
0 (no buffer | the mosnax) imater ound perin and the per r) to <25 ft | t
reter
imeter
around | | 2 pts | g an a e >25° Very widdid Low mana. Mod course High postur | erial pho
6 of the
Low Inter-
area other
Intensity:
10 parkand,
erately Hip
10 conservation
Intensity:
10 row crops, | oto, seltotal la
nsily: Mi
welland la
Shribland, lid
field, lid
go Inter-
control liliago, ri
Commen
dipilir lane | nd use 8 studing forest, ke or river diyoong forest ightly grazed Sity: Reside ecent clear-cu | L aversimated grant and a second seco | age (6 pts
assland, praint
plective loggim
he tane road/h
ms. manicured
), two tane, ro
sity resionnital
in activity, para | e, designat
g, hay field
we tract:
I parkland,
ad | | mex
Gpts | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. | Buffe
an aer
te buff
Wide:
Media
Narro
Very I
perim
Hydrall sou | ers and rial photo fer width ≥150 ft and w: 25 to Narrow. (eler close of vilation | intension, select
on (6 pts maround per
or <160 ft and
or <75 ft around
0 (no buffer | the mosnax) imater ound perin and the per r) to <25 ft | t
reter
imeter
around | | 2b. Usin comprise 6 pts 4 pts 2 pts 1 pt) | g an a e >25° Very widd. Low mana. Mod cours. High pastur et all w | erial pho for the Low Inter area other Intensity: ped parkand, erately High conservation intensity: e. row crops, | oto, sel
total la
nsity: Ma
welland la
Shubland, in
Shubland, in
gh Intens
dudit lane
(gamera
quiti lane | nd use & sluving forest, ke or river divorage forest ghally grazed signify | A average natural gradural gradural gradural gradural control and (<10 areas natural construction and (<10 areas natural gradural gradura | age (6 pts
assland, praini
plective loggim
ne tane road/o
ms. manicured
), two tane, ro
silly resionntal
in activity, par | e, designat
g, hay field
we tract:
d parkland,
ad
, heavily gr
king fol) me | | g plu | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 1 pt) 2 pts | Buffe
an aer
te buff
Wide:
Media
Narro
Very I
perim
Hydr
all sou
Precip
Groun | ers and rial phot fer width ≥150 ft um: 75 to w: 25 to Narrow. (eler close of v iltation dwater | intension, selection, selection (6 pts maround per 4150 ft and 475 ft around (no buffer 26 pts mater for | the mosnax) imeter ound perin and the per r) to <25 ft nax) Wetland | t
neter
imeter
around | | 2b. Usin comprise 6 pts 4 pts 2 pts 1 pt b. Select 2 pts 2 pts 2 pts 2 pts | g an a e >25° Very widdif Low mana. Mod cours. High position t all w 100- Betw | erial pho 6 of the Low Inter Low Intersity; ged parkland, erately Hig. conservator internsity: e. row crops, exetland of year flood, een a Stre | oto, sel
total la
nsity: Ma
welland la
Shubland, la
Shubland, li
gh Inten-
n tilian
Gagmer
quilir lane | nd use & sluving forest, ke or river librory forest ghtly grazed silly: Residenced televicos and industrial industrial pawed road; of control of the control of the control of the control of the control industrial pawed road; of the control | A average natural gradural gradural gradural gradural control and (<10 areas natural construction and (<10 areas natural gradural gradura | age (6 pts
assland, praint
plective loggim
he tane road/h
ms. manicured
), two tane, ro
sity resionnital
in activity, para | e, designat
g, hay field
we tract:
d parkland,
ad
, heavily gr
king fol) me | | mex
Gpts | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 2 pts | Buffe an aer te buff Wide: Medit Narro Very I perim Hydr all sou Precip Groun Seaso |
ers and rial photo fer width ≥150 ft um: 75 to w: 25 to Narrow. (eler close of viliation dwater mail interm | Intension, selection (6 pts maround per 4150 ft and 475 ft around per 426 pts maround marter for ma | the mosnax) imeter ound perin and the per r) to <25 ft nax) Wetland | t
neter
imeter
around | | b. Usin comprise 6 pts 4 pts 2 pts 1 pt b. Select 2 pts pt | g an a e >25° Very wildlift Low mana. Mod cours. Hod position at all w 100- Betw Welli | erial pho 6 of the Low Inter Low Intersity: 10 de partand erately High 10 conservatio 10 intersity: intersi | oto, sel
total la
nsity: Mi
welland la
Shrubland, li
gh Inten-
totiled, li
gh Inten-
totiled, li
gh Inten-
totiled la
le
connec-
quili-lane | nd use & sluving forest, ke or river librory forest ghtly grazed silly: Residenced televicos and industrial industrial pawed road; of control of the control of the control of the control of the control industrial pawed road; of the control | A average natural gradural gradural gradural gradural control and (<10 areas natural construction and (<10 areas natural gradural gradura | age (6 pts
assland, praini
plective loggim
ne tane road/o
ms. manicured
), two tane, ro
silly resionntal
in activity, par | e, designat
g, hay field
we tract:
d parkland,
ad
, heavily gr
king fol) me | | G pts | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 2 pts 5 pts | Buffe an aer te buff Wide: Mediu Narro Very I perim Hydr all sou Precip Groun Seaso Pereni | ers and rial phot for width 2150 ft a m: 75 to Narrow. (eler roes of vitation dwater mial Surfa | i Intensi io, select io, select io (6 pts m around per io <150 ft and io (no buffer 26 pts m water for mittent Surface Water | the mosnax) imater ound perin and the per r) to <25 ft max) Wetland | t
neter
imeter
around | | 2b. Usin comprise 6 pts 4 pts 2 pts 1 pt b. Select 2 pts 2 pts 2 pts 2 pts | g an a e >25° Very wildlift Low mana. Mod cours. Hod position at all w 100- Betw Welli | erial pho 6 of the Low Inter Low Intersity; ged parkland, erately Hig. conservator internsity: e. row crops, exetland of year flood, een a Stre | oto, sel
total la
nsity: Mi
welland la
Shrubland, li
gh Inten-
totiled, li
gh Inten-
totiled, li
gh Inten-
totiled la
le
connec-
quili-lane | nd use & sluving forest, ke or river librory forest ghtly grazed silly: Residenced televicos and industrial industrial pawed road; of control of the control of the control of the control of the control industrial pawed road; of the control | A average natural gradural gradural gradural gradural control and (<10 areas natural construction and (<10 areas natural gradural gradura | age (6 pts
assland, praini
plective loggim
ne tane road/o
ms. manicured
), two tane, ro
silly resionntal
in activity, par | e, designat
g, hay field
we tract:
d parkland,
ad
, heavily gr
king fol) me | | mex
Gpts | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 1 pt) 2 pts 2 pts 5 pts 3c. Select | Buffe an aer te buff Wide: Media Narro Very I perim Hydr all sou Precip Groun Seaso Peren | ers and rial phot fer width ≥150 ft um: 75 to w: 25 to Narrow. (eler roes of viltation dwater unal Intern nial Surfa | i Intensi io, select io, select io (6 pts m around per < 150 ft and 0 (no buffer 26 pts m water for mittent Surface Water duration | the mosnax) imeter ound perin and the per r) to <25 ft max) Wetland | t
meter
imeter
around | 3
Check | b. Usin comprise 6 pts 4 pts 2 pts 1 pt 1 pt 2 pts p | g an a e >25° Very widdid Low mana. Mod cours Mod cours High pastur 100- Betw Wett Ripar | erial pho for the Low Inter area other Intensity: a conservation Inten | oto, sel total la nsity: Ma welland la Shrubland la Gonnec dud field, li Gonnec dud field, li Gonnec dud field, li Gonnec dud field la connec | nd use & sluving forest, ke or river dyoung forest, ke or river dyoung forest ghilly grazed signify grazed signify grazed signify grazed signify grazed coefficient coefficien | A average ratural grant ratural grant ratural grant ratural grant ratural grant ratural for second ratural for second ratural for second ratural ratur | age (6 pts assland, praint plective loggim ne tane road/ me, manicured), two lane, ro sity resionntal n activity, pan / an Land Us | e, designate, designat | | mex
Gpts | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 2 pts 5 pts 3c. Select inundation | Buffe an aer te buff Wide: Media Narro Very I perim Hydr all sou Precip Groun Seaso Peren the do //satur | ers and rial phot for width 2150 ft a m: 75 to Narrow. (eler close of viltation dwater minal Surfa minant ation, of | i Intensitio, select of (6 pts maround per extension) (no buffer e | the mosnax) imeter ound perin and the per r) to <25 ft max) Wetland face Water of | t
meter
imeter
around | 3
Checkign a | b. Usin comprise 6 pls 4 pts 2 | g an a e >25° Very widdid Low mana. Mod cours Mod pastur t all w 100- Betw Wett Ripar r ongo | erial pho for the Low Inter area other Intensity: adaption Intensity: a conservation Intensity: a conservation Intensity: a row crops retland o rear flood een a Stre and/Uplan ian Corrio ing hydr r select a | oto, sel total la nsity: Ma welland la Shrubland la Godfield, li gh Interes distribution old field, li gh Interes distribution of field, li gh Interes distribution old field, li gh Interes distribution old field la Godfield Godfiel | nd use & alumn forest, te or river divormer forest ghow grazed silly: Residence the success and an additional pawer road; of the success the success of | A average ratural grant ratural grant ratural grant ratural grant ratural for the ratural forms and ratural forms | nge (6 pts assland, praini plective loggim ne tane road/ ms. manicured), two lane, ro sity resioential n activity, pan mn Land Us near We verage (8 | e, designate, designat | | 12 pts
max | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 5 pts 3c. Select inundation co-domina | Buffe
an aer
te buff
Wide:
Media
Narro
Very I
perim
Hydr
all sou
Precip
Groun
Seaso
Perenite & au | ers and rial photo fer width ≥150 ft and width ≥150 ft and width verses of verses minant attors, of verses (| intension, select a (6 pts maround per 4 150 ft and 7 | the mosnax) imeter ound perin and the per r) to <25 ft max) Wetland face Water of | imeter imeter around | 3
Check | b. Usin comprise 6 pls 4 pts 2 | g an a e >25° Very widdid Low mana. Mod cours High pastur 100- Betw Wett Ripar r ongo | erial pho for the Low Inter area other Intensity: adaption Intensity: a conservation Intensity: a conservation Intensity: a row crops retland o rear flood een a Stre and/Uplan ian Corrio ing hydr r select a | oto, sel total la nsity: Ma welland la shrubland la shrubland la shrubland la shrubland la shrubland la shrubland la connact plain mam/Lak d Compior rolgic a adjoint: | nd use & sluving forest, ke or river dyoung forest, ke or river dyoung forest ghilly grazed signify grazed signify grazed signify grazed signify grazed coefficient coefficien | A avera natural gra t. recent st pasture, of | age (6 pts assland, praint plective loggim ne tane road/ me, manicured), two lane, ro sity resionntal n activity, pan / an Land Us | e, designate, designat | | G pis | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 2 pts 5 pts 3c. Select inundation | Buffe an aer te buff Wide: Media Narro Very I perim Hydr all sou Precip Groun Seaso Pereni the don/satur | ers and rial photo fer width ≥150 ft is with 25 to Narrow. Ceter close of violation dwater minal Surfa minant later ation, of verage (unently Inc | i Intension, selection (6 pts maround per extension) (150 ft around per extension) (160 pts maround extension) | the mosnax) imeter ound perin and the per r) to <25 ft max) Wetland face Water of | imeter around 3d. Ass | Checkign a lich(s) | b. Usin comprise 6 pts 4 pts 2 | g an a e >25° Very wildlift Low mana. Mod cours) High pastur 100- Betw Well: Ripar r ongo | erial pho 6 of the Low Inter Low Inter Low Intersity, 10 de partand erately High conservation Intensity; 10 de partand crately High conservation Intensity; 10 de partand conservation Intensity; 10 de partand conservation retland co rear lood een a Stre and/Uplan ian Corrio ing hydi r select a i) water input letzalion | oto, sel total la nsity: Mi welland la Shrubland la Shrubland, lott field, li gh Intens tot field, li gh utlender fruiti-lane connect plain aam/Lak d Comp ior rolgic a adjoinli s | nd use & slump forest, ke or river bylogon process, and udustnat paved roady of the process, and udustnat paved roady or roady or respectively. The process of th | A avera natural gra to recent st pasture, of | inge (6 pts assland, prairi plective loggim ne tane road/h ms. manicurec), two tane ro sity resionntal n activity, pan / m Land Us near Wa verage (8 | e, designate, designat | | C G pts | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 5 pts 3c. Select inundation co-domina | Buffe an aer te buff Wide: Medit Narro Very I perim Hydr all sou Precip Groun Seaso Peren the do //satur te & ar | ers and clai phote for width ≥150 ft ≥150 ft w: 25 to Narrow. Ceter clogy () roes of bitation dwater minant of attion, of verage (mently In. mently Sa | i Intension, select on (6 pts maround per 4/150 ft around per 4/150 ft around (no buffer per 4/150 ft around arou | the mosnax) imeter ound perin and the per r) to <25 ft max) Wetland face Water of | imeter around 3d. Ass | Checkign a lich(s) es(s) | b. Usin tompris 6 pts 4 pts 2 | g an a e >25° Very wildlift Low mana. Mod course High position Betw Welli Ripar r ongo | erial pho 6 of the Low Inter Low Inter Low Intersity, 10 de partand erately High
conservation Intensity; 10 de partand crately High conservation Intensity; 10 de partand conservation Intensity; 10 de partand conservation retland co rear lood een a Stre and/Uplan ian Corrio ing hydi r select a i) water input letzalion | oto, sel total la nsity: Mi welland la Shrubland la Shrubland, lott field, li gh Intens tot field, li gh utlender fruiti-lane connect plain aam/Lak d Comp ior rolgic a adjoinli s | nd use & slump forest, ke or river bylogon process, and udustnat paved roady of the process, and udustnat paved roady or roady or respectively. The process of th | A avera natural gra to recent st pasture, of | nge (6 pts assland, praini plective loggim ne tane road/o me, manicured), two lane, ro sity resionnital n activity, para / nn Land Us near We yerage (8 | e, designate, designat | | G pis | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 2 pts 5 pts 3c. Select inundation co-domina 4 pts 3 pts | Buffe an aer te buff Wide: Media Narro Very I perim Hydr all sou Precip Groun Seaso Peren the do //satur te & au Perma Regula | ers and rial photo fer width ≥150 ft is with 25 to Narrow. Ceter close of violation dwater minal Surfa minant later ation, of verage (unently Inc | Intension, select on (6 pts maround per 150 ft and 150 ft and 150 ft and 150 (no buffer per 150 ft and | the mosnax) imeter ound perin and the per r) to <25 ft max) Wetland face Water of | imeter around 3d. Ass | Checkign a lich(s) es(s) kes(s) 8 pls | b. Usin comprise 6 pts 4 pts 2 | g an a e > 25° Very wildlift Low mana. Mod course High position Betw Welli Ripar r ongo | erial pho for the Low Intersity, sed partland, conservation Intersity; sed partland, crately High conservation Intersity; e. row crops, retland of real rea | oto, sel total la nsily: Ma welland la Shrubland la Shrubland, la Shrubland, old field, li gh Intercontilla ne tillagamera fuulir lane connecciplain earn/Lak d Complior adjoinl: s | nd use & suning forest, ke or river light on the control of co | A average ratural grant at apply ad Human S in or nes & an a | nge {6 pts assland, praini plective loggim ne tane road/o ms. manicured), two tane, ro sility (estomital n activity, pan / mear Wa verage (8 | e, designate g, hay field we tract: d parkland, ad heavily gride for the field of t | | G pis | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 5 pts 5 pts 3c. Select inundation co-domina 4 pts | Buffe an aer te buff Wide: Media Narro Very I perim Hydr Groun Seaso Peren the do //satur te & ar Perma Regula Regula Seaso | ers and rial phot fer width 2150 ft is um: 75 to w: 25 to Narrow. Ceter ology (: rees of viltation dwater minal Intern mial Surfa minant is ation, of verage (unently Inund arity Saturn milly Inund milly Inund milly Inund | i Intensi io, select io, select io (6 pts m around per io <150 ft and io (no buffer 26 pts m water for mittent Surface Water duration r select a 4 pts ma undated ated to idated | the mosnax) imeter ound perin and the per r) to <25 ft wetland face Water of dl that x) | imeter around 3d. Ass | Checkign a lich(s) es(s) kes(s) | b. Usin comprise 6 pls 4 pts 2 | g an a e >25° Very widdiff Low hans Mod cours | erial pho for the Low Inter area other Intensity: ped parkand, erately High conservation Intensity: ped parkand, erately High conservation Intensity: ped parkand, erately High conservation Intensity: ped parkand erateland of year flood een a Stre and/Uplan ian Corrio ing hydir select a Alterations Intensity in the parkand park | oto, sel total la nsity: Ma welland la Shrubland la Shrubland la Connec dudicida conne | nd use & slunng forest, ke or river divoring forest, ke or river divoring forest gathy grazed gathy grazed silly: Residuent clear-ct card adustrial pawed road; of the control cont | A avera natural gra tracent sin pasture, of o | nge (6 pts assland, praini plective loggim te tane road/o ms. manicured), two lane, ro sily resioential in activity, par In Land Us Prear Wa Verage (8 Odrec Oth atton(s) and/o | e, designate g, hay field we tract: d parkland, ad heavily gr ing to) me etiand pts ma dging er; r ongoing in | | C G pts | Metric 2. 2a. Using appropria 6 pts 4 pts 2 pts 0 pt Metric 3. 3a Select a 2 pts 2 pts 5 pts 3c. Select inundation co-domina 4 pts 3 pts | Buffe an aer te buff Wide: Media Narro Very I perim Hydr all sou Precip Groun Seaso Pereni the do saturate & ai Perma Regula Regula Seaso Seaso | ers and rial phot fer width 2150 ft is um: 75 to w: 25 to Narrow. Ceter ology (: rees of viltation dwater minal Intern mial Surfa minant is ation, of verage (unently Inund arity Saturn milly Inund milly Inund milly Inund | i Intension, select of (6 pts maround per extension) (no buffer ex | the mosnax) imeter ound perin and the per r) to <25 ft wetland face Water of dl that x) | imeter around 3d. Ass | Checkign a lich(s) es(s) kes(s) 8 pls | b. Usin comprise 6 pls 4 pts 2 | g an a e > 25° Very widdid. Low mana. Mod cours: co | erial photo of the Low Interiors other Low Interiors other Intensity: e. conservation Intensity: e. row crops. retland cover flood een a Stresmid/Uplan ian Corrior ing hydronian Corrior ing hydronian Corrior interiors in the control con | coto, sel total la nsity: Ma welland la shribin la nsity: Ma welland la shribin la nsity: Ma di final la nsity: Ma filiago, ri Connecto di final la nsity: India no di final la nsity: India Indi | nd use & slunng forest, ke or river divoring forest, ke or river divoring forest gathy grazed gathy grazed silly: Residuent clear-ct card adustrial pawed road; of the control cont | A average ratural grant ratura | nge (6 pts assland, prairi plective loggim te tane road/o ms. manicured), two lane, ro sity resionntal in activity, para / an Land Us near We yerage (8 Glare Glare Glare Hann(s) and/o than 20 years seconal within 20 years | e, designate g, hay field we tract: d parkland, ad heavily gr ing to) me etiand pts ma dging er; r ongoing in | | 5 | Metric | 4. Ha | bitat Alterati | on and Hab | itat Str | ructure Development (20 pts max) | |---------------|---|----------------------------------|--|---|------------------|--| | 20 pts
max | 4a. Chi
point v
☐ erosio
☐ sedim
☐ filling/ | value, or
entation
grading | select adjoin dredgin plowing intensiv | ing options i
g
/disking
e grezing | & averag | | | | 4 p | ns ongoin | ng mynor disturbance i
DVETED: Significant | s rare
substrate disturbant | cs occuned r | d more then 20 years grior to the conty occasional 4c. Select the Wetland's habitat structure development, or select adjoining options & average (7 pts max) | | | 2 p | Reco | smeni and/or ongoing
DV6/ING: A single si
assessment, and/or o | ignificani substrale d | fisturbance o | occurred within 20 years prior 7 pts Excellent | | | 1 | Rece | ent or No Recove | Pry: Multiple signifi | capt substrat | ance is frequent 5 pts Good 3 pts Fair sturbance is ongoing (1 pt) Poor | | | 4b_Che | eck past | or ongoing h | abitat altera | tion. As | ssign a point value, or select adjoining options & average (9 pts max) | | | ☐ barrier ☐ selecti ☐ clearci ☐ 9 pt | ive cutting
utting
Is No H | abilat Alteration | azing
Apparent: Nos | is removal | □ nulrient enrichment/nuisance algae al □ herbicide/chemical treatment □ fillling/grading □ other: □ sedimentation □ plowing/disking Iteration and/or ongoing minor alteration is rare than 20 years prior to the assessment and/or ongoing minor habital alterations only occasional | | | (3 p) | | | | | tried within 20 years prior to the assessment, and/or engoing minor alteration is frequent | | | 1 01 | | | | | alterations have occurred in the 20 years prior to the assessment and/or habitat akeration is oncome | | -5 | Metric | | cial Situatio | | | | | 20 pts
max | 5a. Add | 10 pts | if any of these | situations a | врріу | 5b. Add 5 pts for Forested Wetland | | | | | ical Value (see I
USFWS design | | | Exhibits combined canopy cover from any group(s) of frees. Stem DBH must be 23 in to quality as a tree. Must be at least 5 acres or 25% of Welland | | | | Federal/8 | State-listed Thre | | | 5c. Add 5 pts for Urban/Suburban Wetland | | | | | nal species
33 Natural Cornn | nunity Type (at) | easi | 5 Is >50% of the landscape in a 1000-ft radius fow-permeability surfaces? | | | 5 20 | tres or 25% o | of Welland) | | ŀ | 5d. Subtract 10 points for Low Quality Wetland | | | | Old-Grow | Bog (at least 5 acre
ith / Mature Pore | s or 25% of Wellan
sted Welland (| d)
alleast5 | Is the Wetland less than 1 acre and non-conliguous and either: | | | | Great Lat | Welland)
kes Coastal Wet | land | | 1) A stormwater treatment pond excavated from upland or 2) More than 75% covered by highly-invasive vegetation (See Maint 6c) | | 2 | Metric | 6. Veg | etation, Inter | spersion, a | nd Hab | bitat Features (20 pts max) | | 20 pls
max | | | over score for
assign point | | | 6b. Estimate the total open water and assign points (3 pts max) 3 pts High: 2.5 acres or more | | | | | Hatve apecres | high nabve
diversity | 3 pJs | 2 pts Moderate: 1.0 acres to <2.5 acres 1.pl. Low: 0.25 acre to <1.0 acre | | |]] | >25% of
Welland | dominate coverage | modurate to tovi
native diversity | 2 pts | 0 pt Absent: <0.25 acres | | | Vegetaliph | Arta | Investive of non-
native species | moderate to high
native divarsity | 2 918 | 6c. Estimate the total coverage of highly invasive species | | | Component
E > 1/2 sors | | dominale coverage | low
native diversity
moderate to high | 161 | 1 pt Virtually Absent: <1% Aerial Coverage 0 pt Nearly Absent: <5% Aerial Coverage | | | | ≠25% of | Native species
dominate coverage | native diversity
low native diversity | L pls | (1-1 pt) Sparse: 5-25% Aerial Coverage | | | | Welland
nea | Invasive or non- | moderate spine | 1 p1 | -3 pts Moderate: 25-75% Aerial Coverage | | | li l | | natvá speciás
Opminaté coverage | diversity low matter diversity | 0 pi | -5 pts Extensive; >75% Aerial Coverage | | | | · · · · · | Native species | moderate to high
native diversity | 2 014 | 6d. Select one horizontal interspersion option (5 pts max) | | | Vegetation | >26% of
Webship
area | domenalo coverage | low native diversity | 1 pi | 5 pts High Degree of Interspersion 3 pts Moderate Degree of | | | Compenent
is \$15 acres | | consustic or non-united: | species dominate | 0 p1 | Interspersion NAW UN 104 | | | | <25% of Wes | | | D _D) | 1 pt Low Degree of Interspersion | | | | | orest Overstory
hrub/Sapling C | | | (0 pl No Interspersion possess possess repr | | | | | terbaceous Con | | \neg | 6e. Determine the amount of habitat features in the Wetland | | | | | | | | and assign points (12 pts max) | | 7 | | | ic, Recreation | onal and | | Absent (0 pt) Sparse (1 pt) Moderate (2 pts) Dense (3 pts) | | | | | (3 pts max) | -1-1- | | <1 per acre | | pis
nax | | | y and assign p | oints | | 0 to 3 pts Hummocks/Tussocks/Tree Mounds % of area | | ····· | 1 pt | Scenic \ Recreat | zalue
ional Value | | | 0 to 3 pts Coarse Woody Debris (CWD) # per scre 0 to 3 pts Large Living/Dead Standing Trees (12 in DBH) # per scre | | Ė | 1 pl | | Historical Value | | | 0 to 3 pts Large Living/Dead Stationing Trees (12 in DBH) # per edge | | | | | | | | | | DEQ. | nd Wate | r-Mana | MICHI
gement:Division | GAN | RAPIE | | SMENT METHOD FOR WETLA | NDS (MIRAM) | |----------------------|---------------------|------------------|---|-----------------|-----------------------|-----------------|---|--| | Site Na | ame: 🤉 | Arb. | of Hills # H Eva | luato | r Bi | , 77 | Date: | 18/22/09 | | Approx | x. how | much | of the Wetland was reviewed? | <u>37</u> | | | tation within the Welland been all acted within the past 5 years? | | | Note: T | he Eval | uator m | ust be trained in the MiRAM and shou | id refer | to the M | IIRAM Rati | ng Form and User Manual when using t | his form. | | | | | | | | e Ratin | | | | If any | of the t | ollowin | g questions are answered yes, the We | etland is | s rated a | s high (und | tional value and use of the Quantitative | Rating is not necessary. | | | | | e Wetland located within an area
bitat suitable for either the Pipir | | | | | ☐ YES ØNO | | 2. Bas | ed on t | the MC | NR's Endangered Species Ass | essme | ent We | site and | l/or site inspection, do | YES NO | | | | | Threatened or Endangered plan | | | | | E 120 1110 | | | | | cres or more than 25% of the en
Check all Rare Wetland Commi | | | | | | | 5 acres a | uruty i
indiessi | ype:
Ihan 25% | 6 of the wetland, the rare community sho | ould be | ypes .
split off : | erow. Inte | ne Kare Wenang Community is less than
ed separately. | ☐ YES ☐ NO | | _ □s | 31 or \$2 | 2 N <u>atui</u> | ral Community Type 🔲 South | ern Bo | <u>g</u> [|] Old-Gra | wth/Mature Forested Wetland | | | | | | | Ordir | ary Hi | gh Water | Mark of any of the Great Lakes, | ☐ YES \☐'ÑO | | includir | ug tak | e 31, C | Hall ? | | | | | | | | | | | | | ve Ratii | | | | | | | | | | | he subtotal for each metric and add to d | etermine the final score. | | 0 | Me | tric 1. | Wetland Size and Distribut | ion (9 | pts m | ax) | ···· | | | 9 pts
max | 1a. | Select | a size class (6 pts max) | | 7 [| 1b. Using | the NWI, select a scarcity class | (3 pts max) | | ШДА | | 6 pts | ≥50 acres | | - } | /3 p/s | 0 to 20% of surrounding 2-mile radius | `` | | | | 5 pts | 25 acres to <50 acres | · · · · · · · · | - | 2 pls | >20 to 80% of surrounding 2-mile radi | | | | | 4 pts | 10 acres to <25 acres | | 7 | 1 pt | >80% of surrounding 2-mile radius is | | | | | 3 108 | 3 acres to <10 acres | | ٦, | | <u>. </u> | | | | | 2 pts | 1/4 acre to <3 acres | | 7 | | | | | | ļ | 0 pt | less than 1/2 acre | · <u></u> | | | | • | | | | | | | | | | | | 1-1 | Met | ric 2. | Buffers and Intensity of Sur | roun | ding L | and Use | (12 pts max) | · | | 12 pls
ബമാ | | | an aerial photo, select the mos | l . | 7 [| 2b. Using | an aerial photo, select the surro | unding land uses that | | | app | ropriai
i | te buffer width (6 pts max) | | - | comprise | >25% of the total land use & aye | | | | | 6 pts | Wide: ≥150 ft around perimeter | , | | 6 pts | Very Low Interisity: Maturing forest, natural wildlife area, other welland, lake or river | | | | | 4 pts | Medium: 75 to <150 ft around perim | neter |] [| 4 pts | LOW Intensity: Shrubtandyoung forest recent
managed parkland, old field, highly grazed pasture. | | | | Į | 2 pts | Narrow: 25 to <75 ft around the peri | meler | | 2 pts | Moderately High Intensity.(Residential & locurse, conservation billage, recent disar-cuit (10 y | ewija, menjedireo parklandagoli
vs.), iwo lane "mad | | | | 0 рі | Very Narrow; 0 (no buffer) to <25 ft | around | 7 | ‡ pt | High Intensity: Commercial industrial high-di | ensity residential, heavily grazed | | | <u> </u> | i | perimeter | | | | pasture, row crops, multi-lane paved road, construc | ation servicy, parking for mining | | 10 | Met | ric 3 | Hydrology (26 pts max) | | | • | | | | | | | | | | | | | | 25 pts
max | 3a S | elect a | Il sources of water for Wetland | | _ | b. Select | all wetland connections that app | oly | | | X | 1 pt | Precipitation | | _ L | 2 pts | 100-year floodplain | | | | $ \lambda $ | 2 pts | Groundwater | | J L | 2 pts | Between a Stream/Lake/Pond and Hur | nan Land Use | | - | | 2 pts | Seasonal Intermittent Surface Water | |] | 2 pts | Wetland/Upland Complex | | | | L | 5 pls | Perennial Surface Water | | JL | 2 pis | Riparian Corridor | | | | | | the dominant duration of | 3d | . Chec | past or | ongoing hydrolgic alterations in | or near Wetland. | | | | | /saturation, or select all that | As | sign a | | ue, or select adjoining options & | | | | co-d | omina | te & average (4 pts max) | | diloh(s) | | weir(s) point-source | dredging | | | X | 4 pls | Permanently Inundated | | liles(s)
dikes(s) | | stormwater inputs | e olher: | | | | 3 04- | Permanently Saturated to | \ <u></u> ` | 1 | | logic Alterations Apparent: No significant al | | | | | 3 pts | Regularly Inundated | | 8 pts | alteration is o | are | | | | | 2 pts | Regularly Saturated to
Seasonally inundated | İ | 6 pts | | Significant hydrological alternion(s) occurred mo
and/or ongoing minor hydrological alteration is only o | | | | | 1 = 1 | Seasonally Saturated in the | ļ | 4 = 1 | | RG: A single significant hydrological alteration occur | | | The control of the B | | 1 pt | Upper 12 Inches of Soil | - | 4 pts | assessment. | and/or ongoing minor hydrological alleration is frequ | ent | | | ubtotat
is page | | | | (Tpt) | Recent or | No Recovery: Multiple significant hydrological rito the assessment and/or agnificant afteration(s) is | alterations have occurred in the | | | | | | L | | Ten tene hun | e-actioners arrorer septiment arrelation(\$) is | ungenty | Subtotal this page | 17. | Metric | 4. Hab | itat Alteratio | on and Habitat St | ructu | re Developme | ent (20 pts max) | | |---------------|--|---|---
--|--|---|---|---| | 20 pts
mar | 4a. Che point v ☐ erosion ☐ sedime | alue, or
n
entation | or ongoing s select adjoini oredging plowing/ | disking 🗓 co | ge (4
-road ve
nstruction | e. Assign a
pts max)
chicle use
on vehicle use | | | | | 4 pt | No Si
engoin
Reco | g minor disturbance is
vered; Significant : | ance Apparent; No significare substrate disturbance occurred minor substrate disturbance is | more tha | an 20 years prior to the | | tland's habitat structure
select adjoining options &
ix) | | | 2 pt | Reco | vering: A single sig | gniticant substrate disturbance
going minor substrate disturba | accurred | within 20 years prior | 7 pts Exceller
5 pts Good | | | | 1 pt | in the 2 | 0 years prior to the as | ry: Multiple significant substr
sessment and/or significant di | sturbance | e is angoing | 1 pt Poor | now trees, Dead de A, | | | | froad bed/f
we culting
offing
s No Ha
s Records | RR grade | wing or shrub removel
arse woody debris remova
izing
Apparent: No significant al
rabilat afteration occurred mon
inficant habital afteration occur. | I http://discount.com/discount. | utrient enrichment/me
erbiside/chemical tre
edimentation
ind/or ongoing minor all
years prior to the asset
n 20 years prior to the r | ursance álgáe 🔲 dredging
almen! 🔲 filling/grádin
🔲 plowing/disk | ing alterations only occasional teration is frequent | | 5 | Metric | 5. Spe | cial Situation | ns (20 pts max) | - | | | | | 20 pis
max | 5a. Add | 10 pts i | f any of these | situations apply | | | for Forested Wetland | | | | | Contains
Federal/S
nt or anim | USFWS designated Threated Species | Narralive Rating above
ated Critical Habitat
atened or Endangered | | Stem DBH must | or Urban/Suburban W | e at least 5 acres or 25% of Welland | | | 5 ac | res or 25% o
Southern
Old-Grow
s or 25% of t | i Welland)
Bog (at least 5 scre
th / Mature Fore | nunity Type (a) least
as or 25% of Welland)
asted Wetland (at least 5
land | | 5d. Subtract 1
Is the Wetla
1) A stormw | D points for Low Quality and less than 1 age and nor get realment pond excava | y Wetland
-contiguous and either: | | 7 | Metric | 6. Vege | etation, Inter | spersion, and Ha | bitat | Features (20 | pts max) | | | 20 pis
max | | | ver score for
assign point | each Vegetation
s (9 pts max) |] [| 3 pls High | 2.5 acres or more | assign points (3 pts max) | | | | >25% of
Weltand | Notive species
dominale coverage | high hadive dipis oversity dipis moderate to tow number at weeking dipis | | 1 pt Low: | erate: 1.0 acres to <2.5 acr
0.25 acre to <1.0 acre
ent: <0.25 acres | es | | | Vegetation
Component
R>V sere | 6483 | MYSSIVE OF NON-
nalive SOFC-85
dominale coverage | moderate to high netive diversity 2 pts tow halive diversity 2 pt moderate to high | | 1 pt Virtu | e total coverage of hig
ally Absent: <1% Aerial Co
ly Absent: <5% Aerial Cow | verage | | | | ≺25% ol
Wehand
ar€a | Maine species dominate coverage rypsive of non- native species | native diversity 2 of the standard diversity 1 or diodorate painty diversity 1 pt | | -1 p/> Spar
-3 pts Mode | se: 5-25% Aerial Coverage
erate: 25-75% Aerial Covera
nsive: >75% Aerial Covera | Asamon // // // age | | | | >25% of
Wetrand | dominate coverage
Mative spacies
dominate coverage | low native diversity — G pt moderate to high — 2 pts native diversity — 1 pt | | 5 pts High | horizontal interspersion
Degree
of Interspersion
trate Degree of | n option (5 pts max) | | | Vegetation
Comportent
is <% arzé | area
<25‰ of Wet | | e pt | | 1 pt Low | persion Degree of Interspersion | | | | / 0 to | 3 pts 5 | orest Overstory
Shrub/Sapling C
Jerbaceous Con | | - : | 6e. Determine t | terspersion
the amount of habitat f
ints (12 pts max) | eatures in the Wetland | | 3 pis | Cultura | l Value | ic, Recreation
(3 pts max)
y and assign p | | | Absent (0 pt) 1 per acre or 5% of area | Sparse (1 pt) Mode
1 to 5 per scre or 5 to | Perate (2 pts) Dense (3 pts) 10 per acre or > 10 per acre or or 50% of area Mounds % of area | | max | 1 pl | | Value
ional Value
(Historical Value | | | 0 to 3 pts 0 to 3 pts 0 to 3 pts | Coarse Woody Debris (CV
Large Living/Dead Standin
Amphibian Breeding/Nurse | g Trees (12 in DBH) * persons | 46 | DE Land an | d Water Management Division | - INTO THO AT | | | eld Form Ve | HOD FOR WE | EILAN | DS (IVIIKA | 1141) | |--|---|--|--|--
--|--|--|--|--| | Site Na | me: ANDO: IIID W I | Evaluate | or: ph / | 160 | | | Date: | 12/22 | 1.59 | | | . how much of the Wetland was re | | ·· ″ are | eas im | etation within ti
pacted <u>within t</u> | he past 5 year | <u>'s</u> ? 📋 ነ | YES 📈 N | ouffer
O | | Note: Th | ne Evaluator must be trained in the MiRAf | vi and should refe | er to the MiF | RAM Ra | iting Form and Use | er Manual when i | using this | s form. | _ | | | | · N | larrative | Ratio | ng | | | | | | If any | of the following questions are answered
by part of the Wetland located with | yes, the Wetland | is rated as I | high fun | ctional value and | use of the Quant | illative Ra | aling i <u>s not</u> ne | ecessar | | actually | contain habitat suitable for either | the Piping Pl | over or the | e Hine | sai nabitat <u>and</u>
's Emerald Drai | apes the wett
aonfly? | iana | ☐ YES | ∤∏ NO | | Base | ed on the MDNR's Endangered Spe | cies Assessm | ent Web : | site an | d/or site inspec | ction, do | | D/YES | □ N | | tederal/
3 is m | state-listed Threatened or Endang
ore than 5 acres or more than 25% | ered plant or a | nimal spe | ecies c | occur within the | Wetland? | + | | | | Commu
5 acres ar
S 🔲 S | inity Type? Check all Rare Wetlah
Id less than 25% of the wetland, the rare con
1 or S2 Natural Community Type | d Community nmunity should be Southern B | Types bel
split off and
og | iow, ir
dievalua
Old-Gr | the Rare Welland C
ted separately.
owth/Mature For | ommunity is less
rested Wetland | , |
YES | ĎΝ | | 4. Is an | y part of the Wetland within 1000 f | eet of the Ord | inary High | Wate | r Mark of any o | f the Great La | kes, | ☐ YES | MM | | includin | g Lake St. Clair? | | | | | | | | | | Circle th | e appropriate point value(s) and assign the Metric 1. Wetland Size and D | e score for each | | termine | the subtotal for ea | ach metric and ac | dd to dele | ermine the fin | al scor | | 9 pis
mex | 1a. Select a size class (6 pts ma | x) | 11 | b. Usin | g the NWI, sele | ect a scarcity o | class (3 | pts max) | | | | 6 pts ≥50 acres | | | 3 pts | | rounding 2-mile | | | | | | 5 pts 25 acres to <50 acres | | | 2 pts | >20 to 80% of | surrounding 2-mi | ile radius | is wetland | | | | 4 pts 10 acres to <25 acres | | _ | 1 pt | >80% of surrou | inding 2-mile radi | ius is we | lland | | | | 3 pis 3 acres to <10 acres ? | | | | | | | | | | | | | _ | | | | | | | | | 2 pts 1/2 acre to <3 acres 0 pt less than 1/2 acre | | | | | | | | | | | 0 pt less than ½ acre Metric 2. Buffers and Intensi | | | • | | | surroun | ding land i | ises t | | 12 pis
max | 0 pt less than ¼ acre | the most | 2b | . Usin | g an aerial pho
e >25% of the to | to, select the s
otal land use & | & avera | ge (6 pts m | ax) | | | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select | the most | 2b | . Usin | g an aerial pho
e >25% of the to
Very Low Intens | to, select the s
otal land use &
sity: Maturing Jorest. | & avera | ge (6 pts m | ax) | | | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m | the most
nax)
imeter | 2b | . Usin | g an aerial phote >25% of the to | to, select the s
otal land use &
sity: Maturing forest,
elland, lake or rive!
Shrubland/voung forest | & averag | ge (6 pts m
ssłand, prairie, de
lective toporop, ha | ax)
esignated | | | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around | the most
nax)
imeter
ound perimeter | 2b | 6 pts | g an aerial phoie > 25% of the to Very Low Intensive area oner w Low Intensity: s managed parkland . Moderately Hid | to, select the sotal land use & sity: Matuming forest, elland, lake or rive; shrubland/young forest lot field, lightly grezed, in Intensity: Reside | average and a second se | ge (6 pts m
ssland, prairie, de
ective logging, ha
e lane road/two tr
as, maniciped hau | ax)
esignated
ly field . I
ack | | | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around 2 pts Narrow: 25 to <75 ft around | the most
nax)
imeter
ound perimeter
and the perimeter | 2b
co | 6 pts | g an aerial phoie > 25% of the to Very Low Intensity: Low Intensity: managed parkland. c Moderately High course, conservation | to, select the sotal land use & sity: Maturing forest, elland, lake or river shrubland/young forest, in late lief, lightly grazed, in Intensity, Reside Mago, recent cleared. | avera;
natural grading
1, recent set
pastere, ond
ential & lawn
of (<10 yrs.). | ge (6 pts m
estand, prairie, de
ective loggrag, ha
e lane road/two in
is, manicured par
two lane road | ax)
esignated
ty field . I
ack
kland) go | | | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around | the most
nax)
imeter
ound perimeter
and the perimeter | 2b
co | 6 pts | g an aerial phoie > 25% of the to Very Low Intensive area oner w Low Intensity: s managed parkland . Moderately Hid | to, select the sotal land use & sity: Maturing forest, elland, lake or river shrubland/young forest, in intensity, Reside Mago, recent cleared Commercial industrial, industri | & average and aver | ge (6 pts m
ssland, prairie, de
ective logging, ha
e lane road/two tr
is, manicured par
two lane road
ty residential, hea | ax) signated ly field . I ack kland) go | | | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per (2 pts Narrow: 25 to <75 ft around per (2 pts Narrow: 0 (no buffer) | the most nax) imeter ound perimeter and the perimeter by to <25 ft around | 2b
co | 6 pts | g an aerial phoie > 25% of the to Very Low Intensity: Low Intensity: managed parkland. c Moderately High course, conservation High Intensity: | to, select the sotal land use & sity: Maturing forest, elland, lake or river shrubland/young forest, in intensity, Reside Mago, recent cleared Commercial industrial, industri | & average and aver | ge (6 pts m
ssland, prairie, de
ective logging, ha
e lane road/two tr
is, manicured par
two lane road
ty residential, hea | ax) signated ly field . I ack kland) go | | \ <u>Z</u> , | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per Q pts Narrow: 25 to <75 ft around per very Narrow: 0 (no buffer perimeter) | the most nax) imeter ound perimeter and the perimeter to <25 ft around | Zb
co | 6 pts 4 pts 2 pts 1 pt | g an aerial phoie > 25% of the to Very Low Intensive sea, other widdle area, other widdle widdle area, other | to, select the sotal land use & sity: Matuning forest, ethand, lake or rives shrubland/young forest of field, fightly grazed, in Intensity; Reside Mago, recent desired. Commercial industrial nutrillane paved road. | & average natural grading pasture on a first | ge (6 pts m
ssland, prainie, dr
ective toggring. his
la land road/two in
is, manicured par
low land road
ity residential, hea
solivity, parking | ax) signated ly field . I ack kland) oc wily grez | | \Z, | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per Q pts Narrow: 25 to <75 ft around per very Narrow: 0 (no buffer perimeter) Metric 3. Hydrology (26 pts m | the most nax) imeter ound perimeter and the perimeter to <25 ft around | Zb
co | 6 pts 4 pts 2 pts 1 pt | g an aerial phoie > 25% of the to Very Low Intensity: Low Intensity: managed parkland. c Moderately High course, conservation High Intensity: | to, select the sotal hand use & sity: Metuning forest, ethand, lake or river shrubband/young forest lot field, lightly grazed in Intensity; Reside (Mago, recent destruct) Commercial industrial, publisher paved road, commercial services. | & average natural grading pasture on a first | ge (6 pts m
ssland, prainie, dr
ective toggring. his
la land road/two in
is, manicured par
low land road
ity residential, hea
solivity, parking | ax) esignates by field . I ack kland) oc avily grez | | 12.
15 pts | Metric 2. Buffers and Intensit 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 0 pt Very Narrow: 0 (no buffer perimeter Metric 3. Hydrology (26 pts m 3a Select all sources of water for | the most nax) imeter ound perimeter and the perimeter to <25 ft around | Zb
co | 6 ρts 4 pts 1 pt | g an aerial phoie > 25% of the to Very Low Intensity: a managed parkland. a Moderately High Course, conservation High Intensity: pasture, row crops, not all wetland court all wetland court all wetland court all wetland co | to, select the sotal hand use & sity: Metuning forest, ethand, lake or river shrubband/young forest lot field, lightly grazed in Intensity; Reside (Mago, recent destruct Commercial industrial publisher paved road, commercial industrial paved road, commercial industrial paved road, commercial industrial paved road, commercial pave | & averal Industry grant In recent set pasture, ord pasture, ord In recent set s | ge (6 pts m
estand, prairie, de
ective logging, ha
la lane roaditivo ir
is, manicured par
ivo lane road
ity residential, her
activity, parking | ax) signated ly field . I ack kland) oc wily grez | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 0 pt Very Narrow: 0 (no buffer perimeter Metric 3. Hydrology (26 pts m 3a Select all sources of water for X 1 pt Precipitation X 2 pts Groundwater 2 pts Seasonal Intermittent Surf | the most nax) imeter ound perimeter and the perimeter by to <25 ft around nax) Wetland | 3b. | Selec 2 pts 2 pts 2 pts | g an aerial phoie > 25% of the to Very Low intensive to managed parkiand. It is parkiand parkiand parkiand parkiand properties. It is managed parkiand | to, select the sotal hand use & sity. Meturing forest, elland, lake or new bid field, | & averal Industry grant In recent set pasture, ord pasture, ord In recent set s | ge (6 pts m
estand, prairie, de
ective logging, ha
la lane roaditivo ir
is, manicured par
ivo lane road
ity residential, her
activity, parking | ax) signated ly field . I ack kland) go | | mey | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 0 pt Very Narrow: 0 (no buffer perimeter Metric 3. Hydrology (26 pts m 3a Select all sources of water for X 1 pt Precipitation X 2 pts Groundwater | the most nax) imeter ound perimeter and the perimeter by to <25 ft around nax) Wetland | 3b. | . Using mprise 6 ots 4 pts 2 pts 1 pt . Select 2 pts 2 pts | g an aerial phoie > 25% of the to Very Low Intensity: Image of perkend. Comment of the perkend. Comment of the perkend. Comment of the perkend. Comment of the perkend t |
to, select the sotal land use & sity. Metuing forest, elland, lake or rive; should field, tightly grazed in Internsity. Reside tiltage, recent clear, and industrial, nutrillane privad road. commercial industrial nutrillan | & averal Industry grant In recent set pasture, ord pasture, ord In recent set s | ge (6 pts m
estand, prairie, de
ective logging, ha
la lane roaditivo ir
is, manicured par
ivo lane road
ity residential, her
activity, parking | ax) signated by field . In ack kland) go | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 2 pts Narrow: 25 to <75 ft around per very Narrow: 0 (no buffer perimeter Metric 3. Hydrology (26 pts m 3a Select all sources of water for X 1 pt Precipitation X 2 pts Groundwater 2 pts Seasonat Intermittent Surfice Water 3c. Select the dominant duration inundation/saturation, or select a | the most nax) imeter pund perimeter and the perimeter by to <25 ft around nax) Wetland ace Water of 3c It that Ac | 3b. | . Using prise of page 4 pts 4 pts 2 | g an aerial phoie > 25% of the to Very Low intensive to Moderately High course, conservation High Intensity: pasture, row crops, not all wetland confidence in a Street Wetland/Upland Riparian Corridor ongoing hydrolue, or select as | to, select the sotal land use & sity: Maturing forest, etland, lake or river stand, lake or river in the sity: Maturing forest, etland, lake or river in the sity: Reside (Mago, recent desired Commercial industrial, publisher payed road, commercial industrial, publisher payed road, commercial industrial, publisher payed road, commercial industrial ain am/Lake/Pond an Complex of sity: Sity of the | & average natural grant in recent set pasture, one anial & have at a law | ge (6 pts m
ssland, prairie, dr
ective logging, ha
late tane road/two in
is, manicured par
livis lang road
ity residential, het
activity, parking
in Land Use | ax) ssignated to provide the same same same same same same same sam | | Nay | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 2 pts Narrow: 25 to <75 ft around perimeter Metric 3. Hydrology (26 pts m 3a Select all sources of water for X 1 pt Precipitation X 2 pts Groundwater 2 pts Seasonat Intermittent Surfices Water 3c. Select the dominant duration | the most nax) imeter pund perimeter and the perimeter by to <25 ft around | 3b. 3b. 1. Check psign a podich(s) tiles(s) | Selection 2 pts 3 pts 4 pts | g an aerial phoie > 25% of the to Very Low Intensity: s managed persent of Course, conservation High Intensity: pasture, row crops, not all wetland congoing hydrolue, or select ac weir(s). | to, select the sotal land use & sity: Maturing forest, etland, lake or river should be of river so the field lightly grazed in Intensity: Reside Mago, recent debricul doministration and intensity in the second debricul | & average natural grass in recent set pasture, one anial & lawn in (210 yrs.), high-densicons ruccion at apply ad Human is in or ns & average ania | ge (6 pts m
ssland, prairie, dr
ective logging, ha
e lane road/two ir
is, manicured par
iwo lane road
ty residential, her
ectivity, parking | ax) saignated in gradient of the | | Nay | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 0 pt Very Narrow: 0 (no buffer perimeter Metric 3. Hydrology (26 pts m 3a Select all sources of water for X 1 pt Precipitation X 2 pts Groundwater 2 pts Seasonat Intermittent Surfus 5 pts Perennial Surface Water 3c. Select the dominant duration inundation/saturation, or select a co-dominate & average (4 pts material) Permanently Inundated to Permanently Saturated to | the most nax) imeter pund perimeter and the perimeter by to <25 ft around | 3b. 3cooperation of the second | Selection of the second | g an aerial phoie > 25% of the to Very Low intensive in the swindle area other wildlife area other wildlife area of the total lower in the swindle area of | to, select the sotal land use & sity. Maturing forest, elland, lake or rive. Shrubland/young forest side field, lightly grazed, in Intensity. Reside dulage, recent clear, | & averal natural grad natural grad necent set pasture on natural & lawn natural na | ge (6 pts m
ssland, prairie, dr
ective togging, ha
land road/two in
it manicured par
it was land road
it y residential, her
solivity, parking
in Land Use
mear Wetta
erage (8 pt | ax) ssignated to provide the same state of s | | Nay | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 4 pts Medium: 75 to <150 ft around per 9 pts Narrow: 25 to <75 ft around perimeter Metric 3. Hydrology (26 pts m 3a Select all sources of water for | the most nax) imeter pund perimeter and the perimeter by to <25 ft around | 3b. 3b. i. Check pssign a podich(s) (lles(s) dikes(s) 8 pts a | Selection is tecovered to the content of conten | g an aerial phoie > 25% of the to Very Low Intensity: some managed parkend. In Moderately High Course, conservation High Intensity: pasture, row crops, in the all wetland construction of the conservation | to, select the sotal hand use & sity: Metuning forest, etland; lake or river stelland; lake or river should be selected to the | & average natural grade na | ge (6 pts m ssland, prairie, de ective logging, ha e lane road/two in ss. manicured par i, lwb lane road iyr esidential, het sciusty, parking n Land Use mear Wetta erage (8 pt dredgin other: upn(s) and/or one | ax) ssignated in y field in head sack hand sac | | 12.
15 pts | Metric 2. Buffers and Intensi 2a. Using an aerial photo, select appropriate buffer width (6 pts m 6 pts Wide: ≥150 ft around per 4 pts Medium: 75 to <150 ft around per 2 pts Narrow: 25 to <75 ft around per very Narrow: 0 (no buffer perimeter) Metric 3. Hydrology (26 pts m 3a Select all sources of water for X 1 pt Precipitation X 2 pts Groundwater 2 pts Seasonal Intermittent Surfice Water 3c. Select the dominant duration inundation/saturation, or select a co-dominate & average (4 pts materials) Regularly Inundated Regularly Inundated Regularly Saturated to Satura | the most nax) imeter pund perimeter nd the perimeter t) to <25 ft around nax) Wettand ace Water of Acceptation and Acceptati | 3b. 3b. 3c. 3c. 3c. 3c. 3c. 3c. 3c. 3c. 3c. 3c | Selection is lectover decovered to the secover decovered to the secover decovered to the secover decovered to the secover decover deco | g an aerial phoie > 25% of the to Very Low Intensity: Image of parkind. Comments of the total parkind. Comments of the total passure. The tall wetland comments of the tall wetland comments of the tall wetland. The tall wetland wetland of the tall wetland. The tall wetland of the tall wetland of tall wetland. The tall wetland of | to, select the sotal land use & sity. Maturing forest, elland, lake or rives. Helland, lake or rives. Shrubland/young forest old field, lightly grazed, in Intensity; Residence (Lango, tecen) classification te | & average and aver | ge (6 pts m ssland, prairie, de ective logging, ha e lane roadfloor in ss. manicured par i, lwb lane road iyr esidential, het sciusty, parking n Land Use mear Wetla erage (8 pt dredgin other: upn(s) and/or one han 20 years price solonal | ax) esignated if yield yiel | | 0 | Metric | 4. Hal | oitat Alterati | on and Hab | itat Struc | ure Development (20 pts max) | | |--------------------------------|--|---
---|--|---|--|--| | wax
30 bre | point v
☐ erosio
☐ sedim | value, or
on
entation | or ongoing s
select adjoin
dreadin
plowing | ing options (
g
disking | Average ☐ off-roa ☐ constru | | | | | 1 (tling/
4 p
3 p | No S
ongoin
Reco | intensiv ubstrate Disturb g minor disturbance i vered: Significant iment and/or ongoing | ance Apparent
s race
substrate disturbanc | ce occurred more | than 20 years prior to the | etland's habitat structure
select adjoining options &
ax) | | | 2 p | le the a | essesement, and/or o | ngdua ronim gniogn | ate disturbance i | | onl
and thereo, from Try on to | | | | in the 2 | 0 years prior to the a | ssessment and/or s | ignificant disturb | nce is ongoing Tpf Poor | | | | ☐ barrier ☐ selecti ☐ clearci ☐ p pl 6 pt | rroad bed/inve culting utiling ts No Hits Records Records | Rigrade model of the control | wing or shrub rer
arse woody debri
azing
Apparent: No si
nabilal alteration occ
prificant habital alter | moval [is removal [] is removal [] fignificant afterolic curred more than ration occurred v | n a point value, or select adjoining op nutrient enrichment/nuisance algae dredging herbicide/chemical treatment hilling/gradised/mentation plowing/diseased/mentation plowing/disease | larming ng olher: king slatterations only occasional | | 0 | Metric | | cial Situatio | | | tions have occurred in the 2D years prior to the assessment r | and/or habitat alteration is ongoing | | 20 pts
max
20 pts
mar | High High High High High High High High | gh Ecologic
Contains
Federal/S
int or anim
S1, S2, S
ress or 25% of
Southern
Old-Grow
is or 25% of
Great Lak | Bog (alleast 5 acmith / Mature Fore Wetland) ies Coastal Wel Petation, Inter Over score for assign point Native species dominate coverage Native species dominate coverage Invasiva or non- mature species dominate coverage Invasiva or non- | Nerralive Rating aled Critical He alened or Enda nunity Type (at the sor 25% of Welland (alend welland cand). | g above) abital angered and al least 5 | 5b. Add 5 pts for Forested Wetland Exhibits combined canopy cover from Stem DRH must be 23 in to qualify as a tree. Must cover the DRH must be 23 in to qualify as a tree. Must cover the DRH must be 23 in to qualify as a tree. Must cover the DRH must be 23 in to qualify as a tree. Must cover the DRH must be 23 in to qualify as a tree. Must cover the DRH must be 23 in to qualify as the DRH must be 23 in to qualify as the DRH must be 23 in to qualify. The DRH must be 24 in the DRH must be 25 | tetland redius low-permeability surfaces? ty Wetland n-contiguous and either: ated from upland or wasive vegetation (See Meint 6c) d assign points (3 pts max) res ghly invasive species overage errage errage errage errage | | · | Vegelation
Component
is \$\times \text{N scre} | 925% of
Wedand
area
<25% of Wes | | edwindline diversity
moderate to high
majore diversity
low native diversity
species dominate | 0 p1 2 pts 1 pt 0 | 6d. Select one horizontal interspersion 5 pts High Degree of Interspersion 3 pts Moderate Degree of Interspersion 4 pt Low Degree of Interspersion | · | | | 0 to | 3 pts 5 | orest Overstory
hrub/Sapting Co
lerbaceous Con | omponent | | 6e. Determine the amount of habitat and assign points (12 pts max) | eatures in the Watland | | Z
3 pis
max | Cultural | Value
that appl
Scenic \
Recreati | ic, Recreation (3 pts max) y and assign p /alue conal Value Historical Value | oints | | Absent (0 pt) Sparse (1 pt) Mod | VD) # per scre
ng Trees (12 in DBH) # per scre | | DEO. | | | 1 <u>—</u> 4 €
1 | M | ICHIG. | AN R | APIE | | | THOD FOR WI | ETLAND | os (MiR. | AM) | |---------------|----------------------------------|-----------------------|--------------------------------|-----------------------------|-------------------------|------------------------------|---------------|----------------------|---|---|----------------------------|-------------------|---------------------------------------| | T | d Water Mar | | | <u> </u> | Τ | | | 1. | ield Form V | | | , , | · - | | Site Na | we: VV | 1001_ | Hillo | <u> </u> | Evalu | ator: | 12.5 | | <u>C</u> | | | 1/2=1/Q | | | | how mucl | | | | | | 4 | areas im | pacted withir | the Wetland be
the past 5 year | rs? ☑Ý | ′ES 🔲 N | buffer
NO | | Note: II | ie Evaluator i | must be I | rained in the | MiRAM and | should | refer to | the N | MiRAM R | aling Form and t | Jser Manual when | using this | form. | | | 14 | -4 no - 4 No - 3 | | | | | Nar | rativ | e Rati | ng | | | | | | 1. Is an | or the following the part of the | ng quest
re Wetla | ions are ans | werea yes. u
d within an | ne Wella | ind is ra
lesion | ated a | s high lui | nctional value ar | d use of the Quant | titative Ra | iting is not r | | | actually | / contain ha | abitat sı | uitable for | either the | Piping | Plove | r or i | the Hine | 's Emerald D | ragonfiv? | iano | ☐ YES | Ď(√vo | | 2. Base | ed on the M | IDNR's | Endangere | ed Species | Asses | sment | We | b site ar | nd/or site insp
occur within t | ection, do | | ⊠ YES | | | 3. Is me | ore than 5 a | acres of | more than | n 25% of th | re entir | e Wet | nar s
land | compri | sed of a Rare | ne wetland? | |
<u> </u> | | | Commu | inity Type? | Check | ali Rare V | Vetland Co | mmuni | tv Tvc | es b | elow. II | the Rare Welland | l Community is less | than | YES | HAID | | 5 acres ar | าช less than 25
1 or \$2 Nati | 5% of the
ural Con | wettand, the r
omannity Tva | rare communi
ne 🏻 🗀 S | ty should
Outhern | d be sp!
- Boo | | | ited separately. | orested Wetland | . 1 | LES | CAINO | | | | | | | f the C | rdina | y Hi | gh Wate | r Mark of any | of the Great La | kes. | | <u> </u> | | includin | g Lake St. | Clair? | · · <u></u> | | | | | | | | | ☐ YES | ⊠ NO _ | | | | | | | 0 | rienti | itati | ve Rat | ina | | | | | | Circle th | e appropriate | point va | lue(s) and as | ssign the sco | re for ea | ich met | ric. E | etermine | the subtotal for | each metric and ac | dd to dete | rmine the fi | inal score. | | 5 | | | and Size | | | | | | | | | | | | 9 pts | | | | | | | ——
r | | | | | | | | wex | | | class (6 p | its max) | | |]. | | | elect a scarcity of | | | | | | 6 pts | | res to <50 a | | | | ! | 3 pt | | surrounding 2-mile | | | _ | | | 5 pts | | res to <25 a | | | | Ì | 2 pt | | ol surrounding 2-mi
ounding 2-mile rad | | | · · · · · · · · · · · · · · · · · · · | | | 3 pts | | es to <10 act | · | | | L | γrμι | 200% OF SUIT | ounding z-mile rad | ilus is wei | iano | | | | 2 pts | . - | e to <3 acres | -`` | ······ | | | | | | | | | | | 0 pl | less th | han ¼ acre | - | | | | | • | | | | | | · | | | | | | | | | | | | | | | 1 | Metric 2 | . Buffe | rs and In | tensity of | Surro | undir | ng L | and Us | e (12 pts ma | x) | | | | | 12 pls
max | 2a. Using | an aer | ial photo, s | select the I | nost | | ſ | 2b. Usin | g an aerial ph | oto, select the s | surround | ding land | uses that | | | appropria | | er width (6 | · | | | | | e >25% of the | total land use & | & averaç | ge (6 pts r | nax) | | | 6 pts | Wide: | ≥150 ft arou | and perimete | ſ | | | 6 pts | Very Low Inte | ertsily: Maturing forest.
r welland taka or nyer | , natural gras | sland, praine, o | designated | | | 4 pts | Mediu | m: 75 to <1 | 50 ft around | perimete | er | | 4 pts | Low intensity | Shrub)and/young lores
d. old field, lightly grazed | i. recent sele | tolive logging, f | hay field , lightly i | | | 2 pts | Narrov | w: 25 to <75 | fl around the | e perime | ter | | 2 pls | Moderately H | igh Intensity: Reside | ential & Jawns | s manicured o | anklana noll | | | (Opt | Very N | larrow: 0 (no | o buffer) to < | 25 ft aro | und | | 1 pl | | on tiliago, recent clear-cu
Commercial industrial | | | | | | | perime | eter Japanes | 60 37 63
18 (1 1/ | <u>50 ma</u>
1 Garda | | L | | pasture, row crops | rgulldane paved road. | construction | activity, parking | p fojt _i ummu a | | 6 | Metric 3. | Hydro | ology (26 | | 12.01 | | | | ··· | · · · · · · · · · · · · · · · · · · · | | | | | 26 pts | 3a Select | ali sour | ces of wat | ter for Wet | and | | 3 | b. Selec | t all wetland | connections tha | ıt apply | | | | | (1 pt) | Precipi | lation | · · · · · · | | | Ė | 2 pts | 100-year flood | | 6-17-7 | | | | | 2 pts | Ground | · - · · <u> </u> | | | | | 2 pts | | ream/Lake/Pond an | of Human | Land Use | | | | 2 pls | | nal intermitte | | /ater | | L | | Wetland/Uplan | | | | | | | 5 pts | Perenn | iial Surface V | Vater | | | Ĺ., | 2 pts | Riparian Conf | dor | | | | | | | | ninant dur | | 7 | 3d. C | heck | past or | ongoing hyd | rolgic alteration | ıs in or r | near Weti | anú. | | | inundation | | ition, or se
erage (4 p | | t | Assig | n a | point va | lue, or select | adjoining option | ns & ave | erage (8 p | ts max) | | | 4 pts | | nently Inunda | | | ☐ ditch
☐ lites
☐ dike | (S) | , g |] weir (;)
] stom water inpu
] channelization | □ point-sourcits □ filling/gradin | ng | □ olher: | • | | | 3 pts | | nently Satura | | 7 | | ols | | ologic Alteration | s Apparent: No signi | | on(s) and/or or | ngring minor | | | 2 pts | Regula | rly Saturated | to | - | E | nie | | | ological alteration(s) occu | irred more th | an 20 years on | ror to the | | | (Pus | | ally inundate
ally Saturate | | _ | 0 | pts | assessmen | l and/or ongoing mind | r hydrological alleration (| s only occasi | onal | | | | 1 pt | | any Saturate
12 Inches of | | | 4 | pls | Recover
assessmen | ng: A single signific
Landfor engoing min | ant hydrological alteration
or hydrological alteration (| n occumed w
is frequent | ilhin 20 years p | onor to the | | 12 Sub | | | | | | /1 | pt) | Recent o | r No Recovery: | Multiple significant hydro | ological altera | lions have occ | owed in the | | | | | | | L | -\[- | /_ | zo years pr | S. SO GIO BESESSMENT | and/or significant alteration | mital is ongo | រោជ្ជ | | | | Metric | 4. Hal | bitat Alterati | on and Hab | itat Stru | ıcture | Devel | opmei | nt (20 pts ma) | 9 | | · | |---------------|--------------------------------------|--|--|---|---|---|--|---|---|---|--|----------------------------------| | 26 pis
max | | alue, or
n
entation
grading
No S | or ongoing s
select adjoin
deadin
plowing
intensivubstrate
Disturb
g minor disturbance | ing options (
disking
grazing
ance Apparent | & averag | e (4 pt
oad vehic
struction
r: | s max)
cle use
vehicle us | e | | | | itat structure
ning options & | | | 3 pl | | overed: Significant
iment and/or ongoing | | | | | or to the | average (7 | | | Hing options & | | | 2 pl | | vering: A single s | | | | | 10ing 8 | 7 pts | Exceller | nt · | | | | | Dece | essessment, and/or o | | · · · · · · · · · · · · · · · · · · · | | | | 1 1 | Good
Fair | | | | | 1 pt | in the | 20 years prior to the a | ssessment and/or si | gnificant distr | irbance is | ongoing | CCUIIII | / ** | Poor | | | | | | road bed/leve cutting stiling s No H s Reco | RR grade mon
co
grabital Alteration
vered: Significant
vering, A single si | wing or shrub rer
erse woody debri
azing
Apparent: No si
nabital alteration occ
prificant habital atter | noval
is removal
ignificant alter
curred more the
rabon occurre | nutn herb sedir sedir ration andr han 20 year | ent enricht
icide/chen
nentation
or ongoing
ars prior to t
D years prio | ment/nuis
nicel free
minor aller
he assessi
r to the ass | sance elgae | dging
ng/gradin
wing/disk
nor habital
ng minor a | ig le
king o
ding only o
laterations only o | ıl. | | <u> </u> | | | | | | | | | | | | | | <u>-5</u> | Metric | 5. Spe | cial Situatio | ns (20 pts n | nax) | | | | | | | | | 20 pis
max | Hig
Dla
Sac | th Ecologicontains Federal/S nt or anim S1, S2, S res or 25% o Southern Old-Grow s or 25% of | Bog (at least 5 son
th / Mature Fore | Narralive Rating
ated Critical Ha
atened or Enda
nunity Type (at it
as or 25% of Welland
ested Wetland (| g above)
abitat
ingered | 50 | Exhibits tem Discharge Dis | ils comb
BH must b
pts fo
% of the
act 10
Wetland
lormwal | or Forested We bined canopy cove to an oquality as a control of Urban/Suburie landscape in a 1 points for Low diess ihan 1 acre ter treatment pond 75% covered by h | er from a
ee. Must b
ban We
000-ft ra
Qualit
and nor
excava | etland
adius low-pen
y Wetland
o-configuous a
aled from upla | neability surfaces? | | - | | | etation, Inter | | | | | | | | | | | 20 pts
max | | | over score for
assign point | | | 6b | | | total open war
2.5 acres or more | | l assign poi | nts (3 pts max) | | | [| Citt uno | 7, | high delive | 3 pls | | 2 pts | Moder | ate: 1.0 acres to | <2.5 acr | res | | | | 1 | >25% of | Native species
commate coverage | moderale to low
pain a diversity | 2 pt: | | (0 pt) | | 0.25 acre to <1.0 a
t: <0.25 acres | acre | | | | | | Wethird | myasivé of noti-
nahvá speciás | moderate to mon
native diversity | 2 pt: | | Estima | | total coverage | of hig | hlv invasiv | species | | | Vegesetion
Component
is>% acre | | qoundars coverage | low native diversity | 1 рі | | 1 pt | Virtual | ly Absent: <1% A | erial Co | verage | | | | | <25% of | Native species
dominate coverage | halive diversity | 2 ptr | İ | 0 pt | | Absent: <5% Aerial C | | | | | | | Wotlens
area | Invasive of non- | moderate native
diversity | 1 pt | | | | ate: 25-75% Aeria
ive: >75% Aerial | | | | | | | | najiva specież
dominaje coverage | low native diversily | D pl | سبا | | | orizontal inters | | | | | | | >25% of | Native species
dominate coverege | moderate to high
native diversity | 2 pts | 100 | 5 pts | High D | egree of Intersper | sion | option (a | pis (hax) | | | : Végetajion
Componèni | Welland .
dete | invasive of non-native | low halive diversity
openes dominate | t pl | | 3 pts | Modera
intersp | ate Degree of
ersion | | 1 | | | | 15 √'A 201b | <25% of Wei | rovatuside | | D _P I | | 1 pt | | egree of Interspen | sion | 6 | TE 62 | | | / 0 to | | orest Overstory | | | | 0 pl | No Inte | rspersion | | MAXAMI | MONTH IN | | | | | Shrub/Sapling C
Terbaceous Con | | | | Detern | | e amount of ha | | eatures in t | ne Wetland | | 3 pts
max | Cultural | Value
that appl
Scenic \
Recreat | ic, Recreation (3 pts max) y and assign power of the control th | oints | | | D to 3 O to 3 O to 3 | pts H pts C pts L | Sparse (1 pt) 1 to 5 per ace of 5% to 10% of area lummocks/Tussocioarse Woody Det arge Living/Dead imphibian Breedin | Mode
6 to
10% i
ks/Tree
oris (CW
Standin | /D) # per acre
g Trees (12 in | DBH) # per acre | | 13 | Total | | Atta | ch location m | ар, аегіа | il photo | s, and l | andsca | ipe sketch. | | | | # APPENDIX VII Water Sample Location Map And Water Quality Results WATER SAMPLE LOCATION MAP OTY OF ANN ARBOR WASHTENAW COUNTY, MICHIGAN REFERENCE DATE: JANUARY 13, 2010 PROJECT: 08/004831 RAWN: BWT AU FILE: 08004831EC-02 HECKED: GC S66.850.4200 | www.atwell-group.com ₩8-4 APPROXIMATE WATER SAMPLE LOCATION LEGEND: ____APPROXIMATE WETLAND BOUNDARY # Water Quality Results: Field Measurements | | Į- | ield Measurements | | |--------------|--------------|-------------------------|-------------| | Wetland | Type | Parameter | Measurement | | | | Temperature (°C) | 1.9 | | 11 | Ctoma water | Turbidity | 3 | | Н | Storm water | Dissolved Oxygen (mg/L) | 15.54 | | | | pН | 7.22 | | | | Temperature | 3.5 | | E | Storms motor | Turbidity | 51 | | Ł | Storm water | Dissolved Oxygen | 13.77 | | | | рН | 6.75 | | | | Temperature | 0.7 | | \mathbf{F} | C4 | Turbidity | 122 | | ľ | Storm water | Dissolved Oxygen | 14.73 | | | | рН | 5.75 | | | | Temperature | 1 | | т | Milicoted | Turbidity | 7 | | 1 | Mitigated | Dissolved Oxygen | 15.44 | | | | р Н | 6.14 | Thursday, January 07, 2010 Fibertec Project Number: 37434 Project Identification: Arbor Hills Ecological Assessment /08004831 Submittal Date: 12/22/2009 Ms. Guedelupe Cummins Atwell LLC - Southfield Two Towne Square Suite 700 Southfield, MI 48076 Dear Ms. Cummins, Thank you for selecting Fibertec Environmental Services as your analytical laboratory. The samples you submitted have been analyzed in accordance with NELAC standards and the results compiled in the attached report. Any exceptions to NELAC compliance are noted in the report. These results apply only to those samples submitted. Please note samples will be disposed of 30 days after reporting date. Total Kjeldahl Nitrogen analyzed by Merit Laboratories. Fecal Coliform analyzed by WaterTech. Marties If you have any questions regarding these results or if we may be of further assistance to you, please contact me at (517) 699-0345. Sincerely, Daryl P. Strandbergh Laboratory Director DPS/kc **Enclosures** Order: Page: Date: 37434 2 of 10 01/07/10 99223 Atwell LLC - Southfield Sample Description: Chain of Custody: Client Identification: Collect Date: 12/22/09 Arbor Hills Ecological Sample No: Client Project Name: Assessment Sample Matrix: **Ground Water** Collect Time: 08:50 Client Project No: 08004831 Sample Comments: Q: Qualifier (see definitions at end of report) NA: Not Applicable NN: Parameter not included in NELAC Scope of Analysis Definitions: Matrix: Ground Water Analyst: HLL Aliquot ID: 37434-001A Alkalinity by Titrimetry (EPA 0310.2) Prep Batch Analysis Date Analysis Batch Parameter(s) Result Units Reporting Limit Dilution Prep Date µg CaCO3/L WP09L28A 210000 24000 NA NA 12/28/09 1. Bicarbonate Alkalinity (NN) 4 NA 12/28/09 WP09L28A 2. Carbonate Alkalinity (NN) 6000 NA U μg CaCO3/L 12/28/09 WP09L28A NA NA 6000 3. Hydroxide Alkalinity (NN) U µg CaCO3/L Phosphorus, Total (EPA 0365.3) Aliquot ID: 37434-001B Matrix: Ground Water Analyst: CML Result Units Reporting Limit Dilution Prep Date Prep Batch Analysis Date Analysis Batch Parameter(s) O 12/28/09 WF09L28A 12/28/09 WF09L28A 10 1. Phosphorus 160 µg/L Trace Elements by ICP/AES, Total Recoverable (EPA 3005A/EPA 6010B) Aliquot ID: 37434-001C Matrix: Ground Water Analyst: MAP Dilution Prep Batch Analysis Date Analysis Batch Parameter(s) Result Units Reporting Limit Prep Date PT09L28B 10 12/28/09 PT09L28B 12/29/09 60000 1. Calcium 77000 µg/L PT09L28B 12/29/09 2. Magnesium 17000 300 10 12/28/09 PT09L28B µg/L 1000 10 12/28/09 PT09L28B 12/29/09 PT09L28B 3. Potassium 3300 µg/L PT09L28B 12/29/09 PT09L28B 210000 60000 10 12/28/09 4. Sodium µg/L Matrix: Ground Water Analyst: CML Inorganic Anions by IC (EPA 9056) Aliquot ID: 37434-001A Reporting Limit Prep Batch Analysis Date Analysis Batch Prep Date Parameter(s) Result Q Units Dilution 40000 12/22/09 00:00 WA09L22B 12/22/09 00:00 WA09L22B 1. Chloride 330000 µg/L 4 WA09L22B 46 2 12/22/09 00:00 WA09L22B 12/22/09 00:00 2 Nitrate-N 1200 μg/L WA09L22B 12/22/09 00:00 WA09L22B 30 12/22/09 00:00 3. Nitrite-N U µg/L WA09I 22B 12/22/09 00:00 WA09L22B 1000 12/22/09 00:00 4. Sulfate 39000 µg/L Residue, Total (Gravimetric, Dried at 103-105°C) (EPA 0160.3/SM 2540 B.) Aliquot ID: 37434-001A Matrix: Ground Water Analyst: CML Analysis Date Analysis Batch Parameter(s) Reporting Limit Dilution Prep Date Prep Batch Result Units WH09L28A 12/28/09 WH09L28A 12/29/09 1. Total Solids 800000 µg/L 80000 Nitrogen, Ammonia (ISE) (SM 4500-NH3 D.) Aliquot ID: 37434-001B Matrix: Ground Water Analyst: CML Analysis Date Analysis Batch Result Q Units Reporting Limit Dilution Prep Date Prep Batch Parameter(s) 12/28/09 WJ09L28A NA NA 1. Ammonia-N U µg/L 50 Nitrogen, Kjeldahl (SM 4500-Norg B.) Aliquot ID: 37434-001D Matrix: Ground Water Analyst: ML Result Q Units Reporting Limit Dilution Prep Date Prep Batch Analysis Date Analysis Batch Parameter(s) NA NA 01/06/10 NA 1. Total Kjeldahl Nitrogen (NN) 900 µg/L 100 Order: 37434 3 of 10 Page: Date: 01/07/10 Client Identification: Atwell LLC - Southfield Sample Description: H Chain of Custody: 99223 Client Project Name: Arbor Hills Ecological Assessment 08004831 Sample No: Collect Date: 12/22/09 Client Project No: Sample Comments: Definitions: Sample Matrix: **Ground Water** Collect Time: 08:50 1. Coliform, Fecal (NN) Biochemical Oxygen
Demand, 5 Day (SM 5210 B.) Aliquot ID: 37434-001A 5000 1 Dilution Prep Date Prep Batch Matrix: Ground Water Analyst: CML Analysis Date Analysis Batch Parameter(s) 1. BOD Result Q U Reporting Limit 5 NA 12/28/09 00:00 WE09L23A Fecal Coliform Membrane Filter Procedure (SM 9222 D.) Aliquot ID: 37434-001 Q: Qualifier (see definitions at end of report) NA: Not Applicable NN: Parameter not included in NELAC Scope of Analysis. NA Units Units µg/L Reporting Limit Dilution Prep Date Prep Batch Matrix: Ground Water Analyst: WT Analysis Date Analysis Batch Parameter(s) Result CFU/100 mL 20.0 10.0 NA NA 12/22/09 00:00 NA Order: 37434 4 of 10 Page: Date: 01/07/10 | Client Identification: | Atwell LLC - Southfield | | | Sample Des | cription: E | | | Chain of | Custody: 9 | 9223 | |------------------------|--|------------|--------|---------------|-------------------|--------------|-------------------|-------------|----------------|----------------| | Client Project Name: | Arbor Hills Ecological | | | Sample No: | 2 | | | Collect D |)ate: 1: | 2/22/09 | | Client Project No: | Assessment
08004831 | | | Sample Mat | rix: Ground | l Water | | Collect T | ime: 1 | 0:00 | | Sample Comments: | | | | | | | | | | | | Definitions: | Q: Qualifier (see definition | ns at end | of rep | oort) NA: Not | Applicable NN: Pa | rameter not | included in NELAC | Scope of An | alysis. | | | Alkalinity by Titrime | try (EPA 0310.2) | | | | Ali | iquot ID: 37 | 434-002A | Matrix: Gro | und Water A | nalyst: HLL | | Parameter(s) | ,, | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | Bicarbonate Alkali | inity (NN) | 200000 | | μg CaCO3/L | 24000 | 4 | NA | NA | 12/28/09 | WP09L28A | | 2. Carbonate Alkalin | Control of the Contro | U | | μg CaCO3/L | 6000 | 1 | NA | NA | 12/28/09 | WP09L28A | | 3. Hydroxide Alkalini | | U | | μg CaCO3/L | 6000 | 1 | NA | NA | 12/28/09 | WP09L28A | | Phosphorus, Total (| EPA 0365.3) | | | | Al | iquot ID: 37 | 434-002B | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Phosphorus | | 270 | | μg/L | 10 | 1 | 12/28/09 | WF09L28A | 12/28/09 | WF09L28A | | Trace Elements by I | CP/AES, Total Recoverable | le (EPA 30 | 05A/ | EPA 6010B) | Al | iquot ID: 37 | 434-002C | Matrix: Gro | und Water A | nalyst: MAP | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Calcium | | 93000 | | µg/L | 60000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | 2. Magnesium | | 21000 | | μg/L | 20000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | 3. Potassium | | 2900 | | µg/L | 1000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | 4. Sodium | | 41000 | | μg/L | 1000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | Inorganic Anions by | IC (EPA 9056) | | | | Al | iquot ID: 37 | 434-002A | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Chloride | | 55000 | | μg/L | 10000 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | 2. Nitrate-N | | 13000 | | μg/L | 920 | 40 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | 3. Nitrite-N | | U | | μg/L | 30 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | 4. Sulfate | | 19000 | | μg/L | 1000 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | Residue, Total (Grav | vimetric, Dried at 103-105 | °C) (EPA (| 160. | 3/SM 2540 B.) | Al | iquot ID: 37 | ′434-002A | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Total Solids | | 550000 | | μg/L | 80000 | 8 | 12/28/09 | WH09L28A | 12/29/09 | WH09L28A | | Nitrogen, Ammonia | (ISE) (SM 4500-NH3 D.) | | | | Al | iquot ID: 37 | 434-002B | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Ammonia-N | 31,331,262,30 | U | | μg/L | 50 | 1 | NA | NA | 12/28/09 | WJ09L28A | | Nitrogen, Kjeldahl (S | SM 4500-Norg B.) | | | | Al | iquot ID: 37 | '434-002D | Matrix: Gro | und Water A | nalyst: ML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | | | | | | | | | | | | Order: 37434 5 of 10 Page: Date: 01/07/10 Client Identification: Atwell LLC - Southfield Sample Description: Chain of Custody: 99223 Client Project Name: Arbor Hills Ecological Sample No: 2 Collect Date: 12/22/09 Client Project No: Assessment 08004831 Sample Matrix: **Ground Water** Collect Time: 10:00 Sample Comments: Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable NN: Parameter not included in NELAC Scope of Analysis. | Biochemical Oxygen Demand, | 5 Day (SM 5210 B.) | | | Al | quot ID: 374 | 34-002A | Matrix: Gro | ound Water Analyst: CML | | | |----------------------------|--------------------|---|-------|-----------------|--------------|-----------|-------------|-------------------------|----------------|--| | Parameter(s) | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | | 1. BOD | 7400 | J | μg/L | 7300 | 7.33 | NA | NA | 12/28/09 00:00 | WE09L23A | | | Fecal Coliform Membrane Filter Pr | cal Coliform Membrane Filter Procedure (SM 9222 D.) | | | | | 134-002 | Matrix: Gro | Analyst: WT | | |-----------------------------------|---|---|------------|-----------------|----------|-----------|-------------|--------------|-------------------| | Parameter(s) | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Da | te Analysis Batch | | 1. Coliform, Fecal (NN) | 10.0 | | CFU/100 mL | 10.0 | 1 | NA | NA | 12/22/09 00: | 00 NA | Order: Page: 37434 6 of 10 01/07/10 Date: | Client Identification: | Atwell LLC - Southfield | | | Sample Des | cription: I | | | Chain of | Custody: 9 | 9223 | |------------------------|------------------------------|-------------|--------|---------------|-------------------|--------------|-------------------|---------------|-----------------|----------------| | Client Project Name: | Arbor Hills Ecological | | | Sample No: | 3 | | | Collect D | ate: 1 | 2/22/09 | | Client Project No: | Assessment
08004831 | | | Sample Mat | rix: Ground | l Water | | Collect T | ime: 1 | 0:35 | | Sample Comments: | | | | | | | | | | | | Definitions: | Q: Qualifier (see definition | ons at end | of rep | port) NA: Not | Applicable NN: Pa | rameter not | included in NELAC | C Scope of An | alysis. | | | Alkalinity by Titrime | try (EPA 0310.2) | | | | AI | iguot ID: 37 | 434-003A | Matrix: Gro | und Water A | nalyst: HLL | | Parameter(s) | (I) (E) A 0010.2) | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | | | Bicarbonate Alkali | inity (MM) | 260000 | ~ | μg CaCO3/L | 24000 | 4 | NA NA | NA | 12/28/09 | WP09L28A | | Carbonate Alkalin | and the Assessment | 200000
U | | μg CaCO3/L | 6000 | 1 | NA | NA | 12/28/09 | WP09L28A | | 3. Hydroxide Alkalini | 7. 1 | U | | μg CaCO3/L | 6000 | 1 | NA | NA | 12/28/09 | WP09L28A | | Phosphorus, Total (| EPA 0365.3) | | - | | Al | iquot ID: 37 | 434-003B | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | | Analysis Batch | | 1. Phosphorus | | 160 | | μg/L | 10 | 1 | 12/28/09 | WF09L28A | 12/28/09 | WF09L28A | | Trace Elements by I | CP/AES, Total Recoverab | le (EPA 30 | 05A/ | EPA 6010B) | AI | iquot ID: 37 | 434-003C | Matrix: Gro | und Water A | nalyst: MAP | |
Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Calcium | | 100000 | 12770 | μg/L | 60000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | 2. Magnesium | | 22000 | | μg/L | 20000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | 3. Potassium | | 3300 | | μg/L | 1000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | 4. Sodium | | 17000 | | μg/L | 1000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | Inorganic Anions by | IC (EPA 9056) | | | | Al | iquot ID: 37 | ′434-003A | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Chloride | | 27000 | | μg/L | 10000 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | 2. Nitrate-N | | 79 | | μg/L | 23 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | 3. Nitrite-N | | U | | μg/L | 30 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | 4. Sulfate | | 50000 | | μg/L | 1000 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | Residue, Total (Grav | vimetric, Dried at 103-105 | °C) (EPA 0 | 160.: | 3/SM 2540 B.) | Al | iquot ID: 37 | 434-003A | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Total Solids | | 400000 | | μg/L | 100000 | 10 | 12/28/09 | WH09L28A | 12/29/09 | WH09L28A | | Nitrogen, Ammonia | (ISE) (SM 4500-NH3 D.) | | | | Al | iquot ID: 37 | 7434-003B | Matrix: Gro | und Water A | nalyst: CML | | Parameter(s) | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Ammonia-N | | U | | μg/L | 50 | 1 | NA | NA | 12/28/09 | WJ09L28A | | Nitrogen, Kjeldahl (S | SM 4500-Norg B.) | | | | Al | iquot ID: 37 | 7434-003D | Matrix: Gro | und Water A | nalyst: ML | | Parameter(s) | 17 6 | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | | | | | | | | 1 TOP DUTO | | , monthone mane | | 1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601 T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368 F: (517) 699-0388 F: (810) 220-3311 F: (231) 775-8584 Order: Page: 37434 7 of 10 Date: 01/07/10 Client Identification: Atwell LLC - Southfield Sample Description: I Chain of Custody: 99223 Client Project Name: Arbor Hills Ecological Sample No: Collect Date: 12/22/09 Client Project No: Assessment 08004831 Sample Matrix: **Ground Water** Collect Time: 10:35 Sample Comments: Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable NN: Parameter not included in NELAC Scope of Analysis. | Biochemical Oxygen Demand | , 5 Day (SM 5210 B.) | | Al | iquot ID: 374 | 134-003A | Matrix: Gro | ound Water | Analyst: CML | | |---------------------------|----------------------|---|-------|-----------------|----------|-------------|------------|--------------|-------------------| | Parameter(s) | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Da | te Analysis Batch | | 1. BOD | U | | µg/L | 5000 | 5 | NA | NA | 12/28/09 00: | 00 WE09L23A | | | | | | | | | | | | | Fecal Coliform Membrane Filter Pr | ocedure (SM 9222 D. |) | | Aliquot ID: 37434-003 Matrix: Ground Water | | | | | Analyst: WT | |-----------------------------------|---------------------|---|------------|--|----------|-----------|------------|---------------|----------------| | Parameter(s) | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batch | | 1. Coliform, Fecal (NN) | U | | CFU/100 mL | 10.0 | 1 | NA | NA | 12/22/09 00:0 | 0 NA | Order: Page: 37434 8 of 10 01/07/10 Date: | at end o | of rep | Sample Des
Sample No:
Sample Mat | ccription: F 4 rix: Ground | Water | | Chain of Collect D | Date: 12 | 0223
2/22/09 | |---|--|--|---|---|---|--------------------|---|-----------------| | at end o | of rep | | | Water | | | | 2/22/09 | | at end o | of rep | Sample Mat | rix: Ground | Water | | C-II+ T | | | | at end o | of rep | | | | | Collect T | ime: 11 | 1:35 | | at end o | of rep | | | XI NO WOOD | | | 1010000 | | | at end d | or rep | | Applicable MNs De | | included in NELAC | Caspa of Ap | alvaio | | | | | ort) NA: Not | Applicable NN: Pa | rameter not | included in NELAC | , Scope of Alla | arysis. | | | | | | Ali | iquot ID: 37 | 434-004A | Matrix: Gro | und Water An | nalyst: HLL | | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batcl | | 180000 | | μg CaCO3/L | 24000 | 4 | NA | NA | 12/28/09 | WP09L28A | | U | | μg CaCO3/L | 6000 | 1 | NA | NA | 12/28/09 | WP09L28A | | U | | μg CaCO3/L | 6000 | 1 | NA | NA | 12/28/09 | WP09L28A | | | 9 | 12 | | iquot ID: 37 | 434-004B | Matrix: Gro | und Water An | nalyst: CML | | Pocult | 0 | Unite | | | | | | | | 1700 | Q | µg/L | 40 | 4 | 12/28/09 | WF09L28A | 12/28/09 | WF09L28A | | EDA 20 | OE A/I | EDA 6040B) | Al | iquot ID: 37 | 434-004C | Matrix: Gro | und Water An | nalyst: MAP | | | | | | | | | | | | 100000000000000000000000000000000000000 | - | 10000000000 | | 10.74 of the provider | | | | PT09L28B | | | | The second second | | | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | | | | 1000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | 12000 | | µg/L | 1000 | 10 | 12/28/09 | PT09L28B | 12/29/09 | PT09L28B | | | | | Al | iguot ID: 37 | 434-004A | Matrix: Gro | und Water Ar | nalyst: CML | | Result | 0 | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batc | | - | | - | | | | WA09L22B | 12/22/09 00:00 | | | 110 | | | 23 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | U | | | 30 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00:00 | WA09L22B | | 16000 | | µg/L | 1000 | 1 | 12/22/09 00:00 | WA09L22B | 12/22/09 00;00 | WA09L22B | | (EPA 0 | 160.3 | 3/SM 2540 B.) | AI | iquot ID: 37 | 434-004A | Matrix: Gro | und Water Ar | nalyst: CML | | 25.00 | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | Analysis Batc | | | | μg/L | 100000 | 10 | 12/28/09 | WH09L28A | 12/29/09 | WH09L28A | | | | | Al | iquot ID: 37 | 434-004B | Matrix: Gro | und Water Ar | nalyst: CML | | Result | 0 | Units | | | Prep Date | Prep Batch | Analysis Date | Analysis Batc | | 190 | | µg/L | 50 | 1 . | NA NA | NA | 12/28/09 | WJ09L28A | | | - 10 | | ΔΙ | iquot ID: 37 | /434-004D | Matrix: Gro | ound Water Ar | nalyst: ML | | | - | | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Date | 0.000000 | | Result | Q | Units | REDDUIDA LIMIT | | | | ATRIT SISVIBILA | | | | Result 1700 (EPA 30
Result 76000 16000 12000 110 U 16000 0 (EPA 0 Result 320000 Result Result Result | Result Q 1700 (EPA 3005A/I Q 76000 16000 12000 110 U 16000 16000 100000 1000000 | U μg CaCO3/L U μg CaCO3/L U μg CaCO3/L Result Q Units 1700 μg/L (EPA 3005Α/ΕΡΑ 6010Β) Result Q Units 16000 μg/L 12000 μg/L 12000 μg/L 110 μg/L U μg/L U μg/L U μg/L U μg/L O (EPA 0160.3/SM 2540 Β.) Result Q Units O (EPA 0160.3/SM 2540 Β.) Result Q Units | U μg CaCO3/L 6000 U μg CaCO3/L 6000 Ali Result Q Units Reporting Limit 1700 μg/L 40 (EPA 3005A/EPA 6010B) Ali Result Q Units Reporting Limit 76000 μg/L 300 16000 μg/L 1000 12000 μg/L 1000 Ali Result Q Units Reporting Limit 17000 μg/L 1000 110 μg/L 23 U μg/L 30 16000 μg/L 30 16000 μg/L 10000 110 μg/L 23 U μg/L 30 16000 μg/L 10000 Ali Result Q Units Reporting Limit 17000 μg/L 10000 110 μg/L 23 Ali Result Q Units Reporting Limit 17000 μg/L 10000 Ali Result Q Units Reporting Limit 1700 μg/L 10000 | U μg CaCO3/L 6000 1 High CaCO3/L 6000 1 Aliquot ID: 37. Result Q Units Reporting Limit Dilution 1700 μg/L 40 4 (EPA 3005A/EPA 6010B) Aliquot ID: 37. Result Q Units Reporting Limit Dilution 76000 μg/L 300 10 16000 μg/L 1000 10 12000 μg/L 1000 10 12000 μg/L 1000 10 Aliquot ID: 37. Result Q Units Reporting Limit Dilution 17000 μg/L 1000 10 17000 μg/L 10000 1 110 μg/L 23 1 U μg/L 30 1 16000 μg/L 30 1 16000 μg/L 10000 1 (EPA 0160.3/SM 2540 B.) Aliquot ID: 37. Result Q Units Reporting Limit Dilution (IEPA 0160.3/SM 2540 B.) Aliquot ID: 37. Result Q Units Reporting Limit Dilution 17000 μg/L 10000 1 Aliquot ID: 37. Result Q Units Reporting Limit Dilution 17000 μg/L 100000 10 Aliquot ID: 37. Result Q Units Reporting Limit Dilution 17000 μg/L 100000 10 | U | U μg CaCO3/L 6000 1 NA NA NA U μg CaCO3/L 6000 1 NA NA NA Aliquot ID: 37434-004B Matrix: Gro Result Q Units Reporting Limit Dilution Prep Date Prep Batch 1700 μg/L 40 4 12/28/09 WF09L28A (EPA 3005A/EPA 6010B) Aliquot ID: 37434-004C Matrix: Gro Result Q Units Reporting Limit Dilution Prep Date Prep Batch 76000 μg/L 60000 10 12/28/09 PT09L28B 16000 μg/L 300 10 12/28/09 PT09L28B 3400 μg/L 1000 10 12/28/09 PT09L28B 12000 μg/L 1000 10 12/28/09 PT09L28B 12000 μg/L 1000 10 12/28/09 PT09L28B 12000 μg/L 1000 10 12/28/09 PT09L28B 17000 μg/L 1000 10 12/28/09 PT09L28B 17000 μg/L 1000 1 12/22/09 00:00 WA09L22B 110 μg/L 23 1 12/22/09 00:00 WA09L22B 110 μg/L 30 1 12/22/09 00:00 WA09L22B 110 μg/L 30 1 12/22/09 00:00 WA09L22B 16000 μg/L 1000 1 12/28/09 WH09L28A 16000 μg/L 1000 1 12/28/09 WH09L28A 16000 μg/L 10000 10 12/28/09 WH09L28A 16000 μg/L 10000 10 12/28/09 WH09L28A 16000 μg/L 100000 10 12/28/09 WH09L28A | U | Order: Page: 37434 9 of 10 Page: 01/07/10 Client Identification: Atwell LLC - Southfield Sample Description: F Chain of Custody: 99223 Client Project Name: : Arbor Hills Ecological Assessment Sample No: Collect Date: 12/22/09 Client Project No: Assessment 08004831 Sample Matrix: **Ground Water** Collect Time: 11:35 Sample Comments: Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable NN: Parameter not included in NELAC Scope of Analysis. | Biochemical Oxygen Demand | , 5 Day (SM 5210 B.) | | | Al | Aliquot ID: 37434-004A Matrix: Ground Water | | | | Analyst: CML | |---------------------------|----------------------|---|-------|-----------------|---|-----------|------------|-------------|--------------------| | Parameter(s) | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Da | ate Analysis Batch | | 1. BOD | 12000 | J | µg/L | 7300 | 7.33 | NA | NA | 12/28/09 00 | :00 WE09L23A | | Fecal Coliform Membrane Filter Procedure (SM 9222 D.) | | | | | Aliquot ID: 37434-004 | | | Matrix: Ground Water Analyst: WT | | | |---|-----|--------|---|------------|-----------------------|----------|-----------|----------------------------------|---------------|------------------| | Parameter(s) | 223 | Result | Q | Units | Reporting Limit | Dilution | Prep Date | Prep Batch | Analysis Dat | e Analysis Batch | | 1. Coliform, Fecal (NN | 1) | 270 | | CFU/100 mL | 10.0 | 1 | NA | NA | 12/22/09 00:0 | 00 NA | #### Analytical Laboratory Report Laboratory Project Number: 37434 Order: Page: Date: 37434 10 of 10 01/07/10 #### Definitions/ Qualifiers: - A: Spike recovery or precision unusable due to dilution. - B: The analyte was detected in the associated method blank. - E: The analyte was detected at a concentration greater than the calibration range, therefore the result is estimated. - J: The concentration is an estimated value. - U: The analyte was not detected at or above the reporting limit. - X: Matrix Interference has resulted in a raised reporting limit or distorted result. - W: Results reported on a wet-weight basis. - *: Value reported is outside QA limits #### **Exception Summary:** Method: SM 5210 B. Sample Number: 37434-002A Parameter: BO Exception: Analyte is found in the associated method blank as well as in the sample. Sample Number: 37434-004A Parameter: BOD Exception: Analyte is found in the associated method blank as well as in the sample. 100312 DCSID: G-610.4 (12/07/09)